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Abstract
Objective. Electrical recordings of neural activity from brain surface have been widely employed in
basic neuroscience research and clinical practice for investigations of neural circuit functions,
brain–computer interfaces, and treatments for neurological disorders. Traditionally, these surface
potentials have been believed to mainly reflect local neural activity. It is not known how
informative the locally recorded surface potentials are for the neural activities across multiple
cortical regions. Approach. To investigate that, we perform simultaneous local electrical recording
and wide-field calcium imaging in awake head-fixed mice. Using a recurrent neural network
model, we try to decode the calcium fluorescence activity of multiple cortical regions from local
electrical recordings.Main results. The mean activity of different cortical regions could be decoded
from locally recorded surface potentials. Also, each frequency band of surface potentials
differentially encodes activities from multiple cortical regions so that including all the frequency
bands in the decoding model gives the highest decoding performance. Despite the close spacing
between recording channels, surface potentials from different channels provide complementary
information about the large-scale cortical activity and the decoding performance continues to
improve as more channels are included. Finally, we demonstrate the successful decoding of whole
dorsal cortex activity at pixel-level using locally recorded surface potentials. Significance. These
results show that the locally recorded surface potentials indeed contain rich information of the
large-scale neural activities, which could be further demixed to recover the neural activity across
individual cortical regions. In the future, our cross-modality inference approach could be adapted
to virtually reconstruct cortex-wide brain activity, greatly expanding the spatial reach of surface
electrical recordings without increasing invasiveness. Furthermore, it could be used to facilitate
imaging neural activity across the whole cortex in freely moving animals, without requirement of
head-fixed microscopy configurations.

1. Introduction

As an important tool for electrophysiological record-
ings, neural electrodes implanted on the brain sur-
face have been instrumental in basic neuroscience
research to study large-scale neural dynamics [1]

in various cognitive processes, such as sensorimotor
processing [2] as well as learning and memory [3]. In
clinical settings, neural recordings have been adopted
as a standard tool to monitor the brain activity in epi-
lepsy patients before surgery for detection and local-
ization of epileptogenic zones initiating seizures [4]
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and functional cortical mapping [5]. Neural activ-
ity recorded from the brain surface exhibits rich
information content about the collective neural activ-
ities reflecting the cognitive states and brain func-
tions, which was leveraged for various types of brain–
computer interfaces during the past decade. For
example, surface potential recordings have been used
for studying motor control, such as controlling a
screen cursor [6] or a prosthetic hand [7]. They
have also been used to decode the mood of epilepsy
patients, paving the way for the future treatment of
neuropsychiatric disorders [8]. Recent advances have
shown that electrical recordings from cortical sur-
face combined with the recurrent neural networks
can even enable speech synthesis [9], demonstrating
superior performance compared to those achieved
through traditional noninvasive methods.

For the interpretation of surface potentials in
terms of their neural correlates, most research has
focused on local neural activities. The high-gamma
band has been found to correlate with the ionic
currents induced by synchronous synaptic input to
the underlying neuron population [10]. Besides that,
the dendritic calcium spikes in the superficial cor-
tical layers also contribute to surface potentials [11].
Recently, it has been reported that even the action
potentials of superficial cortical neurons could be
detected in surface recordings [12]. Despite the pre-
dominant focus of relating the surface potentials to
local neural activity, they may also correlate with the
large-scale activity of multiple cortical regions. This
could be achieved through the intrinsic correlations
of the spontaneous activities among large-scale cor-
tical networks [13, 14] due to the anatomical con-
nectivity [15] and the global modulation of neur-
omodulatory projections [16]. However, this rich
information content of surface potentials encoded for
the large-scale cortical activity remains unexploited
and little is known about how local surface potentials
are correlated with the spontaneous neural activities
of distributed large-scale cortical networks.

In this work, we investigate whether the rich
information content of the local neural potentials
recorded from brain surface can be harnessed to infer
the cortex-wide brain activity. We employed optic-
ally transparent graphene microelectrodes implanted
over the mouse somatosensory cortex and posterior
parietal cortex (PPC) to perform simultaneous wide-
field calcium imaging of the entire dorsal cortex
during local neural recordings in awake mice. Mul-
timodal datasets generated by these experiments were
used to train a recurrent neural network model to
learn the hidden spatiotemporal mapping between
the local surface potentials and the cortex-wide brain
activity detected by wide-field calcium imaging. We
demonstrated that both the average spontaneous
activity from multiple cortical regions and the pixel-
level cortex-wide brain activity can be inferred from
locally recorded surface potentials. Our results show

that in addition to the changes of local neural activity,
the spontaneous fluctuations of locally recorded sur-
face potentials also reflect the collective variations of
large-scale neural activities across the entire cortex.

2. Methods

2.1. Fabrication of graphene array
Electrode arrays were fabricated on 4′′ silicon wafers
spin coated with 20 µm thick PDMS. 50 µm thick
PET (Mylar 48-02F-OC) was placed on the adhesive
PDMS layer and used as the array substrate. 10 nm
of chromium and 100 nm of gold were deposited
onto the PET using a Denton 18 Sputtering Sys-
tem. The metal wires were patterned using photo-
lithography and wet etching methods. Single-layer
graphene was placed on the array area using a previ-
ously developed transfer process [17, 18]. The wafer
was then soft baked for 5 min at 125 ◦C to bet-
ter adhere graphene to the substrate. PMMA was
removed via a 20 min acetone bath at room tem-
perature then rinsed with isopropyl alcohol and DI
water for ten 1 min cycles. The graphene channels
were patterned using AZ1512/PMGI bilayer photo-
lithography then oxygen plasma etched (Plasma Etch
PE100). A four-step cleaning method was performed
on the array consisting of an AZ NMP soak, remover
PG soak, acetone soak, and ten-cycle isopropyl alco-
hol/DI water rinse. 8 µm thick SU-8 2005 was spun
onto the wafer as an encapsulation layer and open-
ings were created at the active electrical regions using
photolithography. The array was then given a final
ten-cycle isopropyl alcohol/DI water rinse to clean
SU-8 residue and baked for 20 min at temperature
progressing from 125 ◦C to 135 ◦C.

2.2. Animals
All procedures were performed in accordance with
protocols approved by the UCSD Institutional
Animal Care and Use Committee and guidelines of
the National Institute of Health. Mice (cross between
CaMKIIa-tTA:B6;CBA-Tg(Camk2a-tTA)1Mmay/J [J
AX 003010] and tetO-GCaMP6s: B6;DBA-Tg(tetO-
GCaMP6s)2Niell/J [JAX 024742], Jackson laborat-
ories) were group-housed in disposable plastic cages
with standard bedding in a roomwith a reversed light
cycle (12 h–12 h). Experiments were performed dur-
ing the dark period. Both male and female healthy
adult mice were used. Mice had no prior history of
experimental procedures that could affect the results.

2.3. Surgery andmultimodal experiments
Adult mice (6 weeks or older) were anesthetized
with 1% and 2% isoflurane and injected with baytril
(10 mg kg−1) and buprenorphine (0.1 mg kg−1) sub-
cutaneously. A circular piece of scalp was removed to
expose the skull. After cleaning the underlying bone
using a surgical blade, a custom-built head-bar was
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implanted onto the exposed skull over the cerebel-
lum (∼1mmposterior to lambda)with cyanoacrylate
glue and cemented with dental acrylic (Lang Dental).
Two stainless-steel wires (791 900, A-MSystems)were
implanted into the cerebellum as ground/reference.
A craniotomy (∼7 mm × 8 mm) was made to
remove most of the dorsal skull and the graphene
array was placed on the surface of one hemisphere,
covering somatosensory cortex (S1) and PPC. The
exposed cortex and the array were covered with a
custom-made curved glass window, which was fur-
ther secured with Vetbond (3 M), cyanoacrylate glue
and dental acrylic. Animals were fully awake before
recordings. During recording, animals were head-
fixed under the microscope, free to run or move their
body, and not engaged in task.

The wide-field calcium imaging was performed
using a commercial fluorescence microscope (Axio
Zoom V16, Zeiss, objective lens (1×, 0.25 NA)) and
a CMOS camera (ORCA-Flash4.0 V2, Hamamatsu)
through the curved glass window as previously
described [19]. The light source for wide-field cal-
cium imaging is HXP 200 C (Zeiss). The filter set
for imaging GCaMP signals is commercially installed
in the microscope. It consists of a bandpass filter for
the excitation light (485 ± 17 nm), a beamsplitter
(500 nm), and a tunable bandpass filter centered at
520 nm for the emission light. Images were acquired
using HCImage Live (Hamamatsu) at 29.98 Hz,
512 × 512 pixels (field of view: 8.5 mm × 8.5 mm,
binning: 4, 16 bit).

The microelectrode array was connected to a
custom-made connector board through a ZIF con-
nector. The surface potential data was sampled
with Intan RHD2132 amplifier and recorded using
Intan RHD2000 system. The sampling frequency was
10 kHz. To synchronize the electrical recording with
the calcium imaging, we used a trigger signal (TTL), a
2 V pulse of 1 s, to trigger the start of the calcium ima-
ging. Meanwhile, this trigger signal was also sent to
the ADC of Intan recording system. During the data
processing stage, we detected the onset of the pulse
and aligned the imaging data and electrical data to
that time point. Three mice were recorded, each hav-
ing two to three recording sessions. The length for
each recording session was 1 h.

2.4.∆F/F processing
To obtain the ∆F/F time series from the wide-field
calcium imaging data, we first down-sampled the
512× 512 pixel images to smaller images of 128× 128
pixels. For each pixel, we defined a dynamic fluores-
cence (F) baseline for a given time point as the 10th
percentile value over 180 s around it. For the begin-
ning and ending of each imaging block, the following
and preceding 90 s windowwas used to determine the
baseline, respectively. An 8th order 6 Hz Butterworth
low-pass filterwas applied to the∆F/F activity of each

pixel to remove the high frequency noise and hemo-
dynamic contamination from heartbeat. The activity
of each cortical region was obtained by averaging over
the ∆F/F signals from all the pixels within the same
cortical regions defined by the Allen Brain Atlas.

2.5. Surface recording data processing
The raw surface recording data was first passed
through notch filters to eliminate the 60 Hz power-
line contaminations and their higher harmonics at
120 Hz and 180 Hz. The signals were further filtered
with multiple 6th order Butterworth band-pass filters
designed for different frequency bands (δ: 1–4 Hz,
θ: 4–7 Hz, α: 8–15 Hz, β: 15–30 Hz, γ: 31–59 Hz,
Hγ : 61–200 Hz). The resulting signals were squared
and smoothed by a Gaussian function with 100 ms
time window to obtain an estimate of the instantan-
eous power. To prepare the input data for the decod-
ing neural network, the power traces at different fre-
quency bands were down-sampled to 29.98 Hz by
interpolation to match the sampling rate of calcium
imaging data. To suppress the potential artifacts in the
recording signal, at each frequency band we clip the
power traces with a threshold of 95 percentile.

2.6. Neural network models
The neural network model consists of a sequential
stacking of a linear hidden layer, one bidirectional
LSTM layer and a linear readout layer. The 1st lin-
ear layer was followed by batch normalization, ReLU
activation, and dropout with a probability of 0.3. The
LSTM layer was followed by batch normalization.
The multichannel power at different frequency bands
were used as inputs to the network. To decode the
neural activity at each time step t, the power segments
between [t− 1.5 s, t+ 1.5 s]was used (90 time steps in
total). The 1st linear layer had 16 neurons and the bid-
irectional LSTM had eight hidden neurons. The same
neural network model was used for the two decod-
ing tasks except that the number of neurons in the
final output layer differs based on the targeting out-
put. To decode the∆F/F activity of 12 cortical regions
simultaneously, the output neuron number was set
to 12. To decode the cortex-wide brain activity, the
output neuron number was set to ten to generate the
scores for the ten ICs. Assuming using six frequency
bands from 16 recording channels, setting sequence
length of LSTM layer to 90, and setting batch size to
128, the input and output size for each layer of the
model is shown in table 1. Note that we flattened the
last two dimensions of the LSTM output to make it
128× 1440 before feeding it to the last linear layer.

The neural network model was implemen-
ted in Pytorch [20]. The model parameters were
trained through Adam optimizer with learning
rate = 1 × 10−4, beta1 = 0.9, beta2 = 0.999, epsi-
lon = 1 × 10−8. The batch size was 128 and the
training usually converged within ∼30 epochs. For
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Table 1. The size for input and output tensors of each layer.

Input size Output size

First linear layer 128× 90× 96 128× 90× 16
Bi-LSTM layer 128× 90× 16 128× 90× 16
Last linear layer 128× 1440 128× 12 or

128× 10

both tasks, the mean squared error was chosen as the
loss function.Weperformed ten-fold cross-validation
where each 1 h recording session was chunked into
ten segments, each lasting for 6 min. The neural net-
work model was trained on 9/10 of the data segments
and tested on a different held-out segment that was
unseen during the training. To evaluate the model
performance, correlation between the decoded and
ground truth data for each held-out set was averaged.
For each 1 h recording session, a new network model
is trained and tested. Then, for each mouse, the cor-
relation was further averaged across the recording
sessions to give the performance for that mouse.

2.7. Statistical tests
All statistical analyses were performed in MATLAB.
Statistical tests were two-tailed and significance was
defined by alpha pre-set to 0.05. All the statistical tests
are described in the figure legends. Multiple compar-
isons were corrected for by Benjamini–Hochber cor-
rections.

3. Results

3.1. Multimodal recordings of cortical activity
Cortical recordings in both clinical applications
and neuroscience studies use conventional metal-
based neural electrode arrays. However, these opaque
neural electrodes are not suitable for multimodal
recordings combined with optical imaging since they
will block the field of view and generate light-induced
artifacts under optical imaging [21, 22]. Compared
to conventional neural electrode arrays, graphene-
based surface arrays are optically transparent and free
from light-induced artifacts, both of which are key
to the simultaneous electrical recordings and optical
imaging of cortical activity [18, 23]. Wide-field cal-
cium imaging is an optical imaging technique that can
provide simultaneous monitoring of large-scale cor-
tical activity and has been used to study the dynam-
ics of multiple cortical regions and their coordina-
tion during behavior [19, 24–26]. Compared to fMRI
that also offers large spatial coverage, the wide-field
calcium imaging provides better spatiotemporal res-
olution and higher signal-to-noise ratio [25]. It has
been shown that wide-field calcium signals mainly
reflect local neural activity [19]. Therefore, the mul-
timodal experiments combining electrical recordings
based on graphene arrays and the wide-field calcium
imaging generate unique datasets that are ideal for

investigating themapping from local neural signals to
large-scale cortical activity.

We fabricated transparent graphene arrays on
50µm thick flexible polyethylene terephthalate (PET)
substrates [18, 23] (see section 2 for details). 10 nm
of chromium and 100 nm of gold were deposited
onto the PET and the metal wires were patterned
using photolithography and wet etching methods.
The graphene layer was transferred and patterned
with photolithography and oxygen plasma etching
to form electrode contacts. Finally, 8 µm thick SU-
8 was used as an encapsulation layer and openings
were created at the active electrical regions using pho-
tolithography. The graphene array has 16 recording
channels, each of size 100 × 100 µm. The spacing
between adjacent channels is 500 µm. The graphene
array was implanted unilaterally over the somato-
sensory cortex (S1) and PPC of the mice to perform
the simultaneous electrical recordings and wide-field
calcium imaging (figure 1(a)). We performed mul-
timodal recordings of spontaneous neural activity
in awake mice during either quiet resting state or
actively running or moving. An example wide-field
image obtained during the experiment is shown in
figure 1(b). Note that the cortical activity under the
array could still be observed due to the transpar-
ency of the graphene electrode. Based on Allen brain
atlas, we parcellated the brain into 12 different ipsilat-
eral (the hemisphere with array implanted) and con-
tralateral cortical regions (figure 1(c)), including the
primary and secondary motor cortices (M1, M2), the
somatosensory cortex (S1), the PPC, the retrosplenial
cortex (RSC), and the visual cortex (Vis). Represent-
ative spontaneous cortical activity recorded during
the experiment is shown in figure 1(d). We observed
dynamical changes of large-scale cortical activity,
involving co-activations of multiple cortical regions.
In the simultaneousmulti-channel neural recordings,
we also observed differences in power traces from dif-
ferent channels at multiple frequency bands during
the spontaneous cortical activity (figure 1(e)). Com-
pared with the fluorescence activity, the neural poten-
tial signal has a much higher temporal resolution and
richer frequency components.

3.2. Cortical activity decoder design
To investigate whether the locally recorded surface
potentials could be used to infer the cortex-wide
brain activity, we investigated two decoding tasks,
namely the decoding of the average activity from indi-
vidual cortical regions and the decoding of pixel-level
cortex-wide brain activity. To achieve these goals,
we developed a compact neural network model con-
sisting of a linear hidden layer, a one-layer LSTM
network, and a linear readout layer (figure 2, see
section 2 for details). In both tasks, the signal power
traces of multiple frequency bands recorded from
different recording channels were used as inputs to
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Figure 1. Simultaneous multimodal wide-field calcium imaging and surface potential recordings. (a) Schematic of the
multimodal experimental setup combining neural recordings using transparent graphene electrodes and wide-field calcium
imaging. (b) Example field of view of wide-field calcium imaging during experiment (left). Clear area at the center of the
transparent array includes 16 graphene electrodes, whose scanning electron microscope image is shown on the right. (c) Imaged
cortical regions based on Allen Brain Atlas. M2: secondary motor cortex; M1: primary motor cortex; S1: primary somatosensory
cortex; PPC: posterior parietal cortex; RSC: retrosplenial cortex; Vis: visual cortex. (d) Wide-field fluorescence activity during 10 s
long recordings, showing the diverse spontaneous activity across the mouse cortex. (e) Fluorescence activity for different cortical
regions (left), the simultaneously recorded neural signals (middle) for a 3 s time interval (marked by the yellow bar on the left),
and their power at three frequency bands (δ: 1–4 Hz, β: 15–30 Hz, Hγ : 61–200 Hz, right three columns).

the neural network. In the 1st task, the neurons in the
output layer of the neural network directly generate
the activity of all the cortical regions simultaneously.
In the 2nd task, we first performed principal com-
ponent analysis (PCA) on the cortical activity to
remove the noise and reduce the dimensionality of
the data. Across all the mice, the top ten PCs explain
>92% variance in the data (supplementary figure
1 available online at stacks.iop.org/JNE/18/066009/
mmedia). Then based on the PCA results, we further
performed spatial independent component analysis
(ICA) to obtain the independent components (ICs)
and their weighting scores for the data at each time
frame. In all the three mice, the identified ICs reflect
different functional modules and hemodynamic sig-
nals on blood vessels (supplementary figure 2) and
provide a set of functionally meaningful basis for
the decomposition of the large-scale cortical activ-
ity. The output layer of the neural network dir-
ectly generates the estimated weighting scores of indi-
vidual ICs, which were further used to reconstruct

the cortex-wide brain activity at each time frame with
pixel-level spatial resolution (figure 2).

3.3. Decoding of activity for individual cortical
regions
Based on the multimodal data we collected dur-
ing the animal experiment and the above designed
decoder network model, we decoded the mean activ-
ity of both the ipsilateral and contralateral cortical
regions using the power of six frequency bands from
all recording channels. An example of decoded and
ground truth (∆F/F from wide-field calcium ima-
ging) cortical activity from one held-out set is shown
in figure 3(a). The decoding performances for S1,
PPC, and RSC regions closely resemble the ground
truth cortical activity, while the decoding perform-
ances for M1, M2, and Vis are lower, possibly due
to their increasing distances to the recording elec-
trode array. We performed the same decoding ana-
lysis using shuffled data. The results show decod-
ing performance close to zero (supplementary figure
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Figure 2. Schematic of the decoding model. Signal power from different channels during time interval [t − 1.5 s, t + 1.5 s]
(90 time steps) is used to decode the cortical activity at time point t. The decoding neural network model consists of a sequential
stacking of a linear hidden layer, one bidirectional LSTM (Bi-LSTM) layer and a linear readout layer. For the task of decoding the
mean∆F/F activity from multiple cortical regions, the final linear readout layer directly outputs the activities of 12 cortical
regions at time t. For the task of decoding the pixel-level cortex-wide brain activity, the final linear readout layer outputs the
weighting scores for all the ICs at time t, from which the cortex-wide brain activity at time t is reconstructed.

3(a)). We evaluated the stability of the decoding per-
formance across time using a 30 s sliding window.
The results show that the decoding performance fluc-
tuates from time to time but remains stable in the
longer time intervals (supplementary figure 4(A)).
We also compared the decoding performance of indi-
vidual cortical regions during rest and movement
intervals and found similar decoding performance
between rest and movement phases (supplementary
figure 4(B)). Therefore, the fluctuations of the decod-
ing performance across time are not due to animal
movements.

To further evaluate how informative different fre-
quency bands are for the decoding of the activity
from different cortical regions, we used the signal
power from different frequency bands of all channels
as inputs and performed ten-fold cross-validation to
evaluate the decoding performance of the neural net-
work model. We find that even though all the fre-
quency bands are informative of the activities in dif-
ferent cortical regions, the high gamma power band
gives the highest decoding performance for all the
cortical regions compared to other frequency bands
(supplementary figures 5 and 6). However, across all
the cortical regions, using all the frequency bands

yields the best decoding performance compared to
using any single frequency band (figure 3(b)), imply-
ing that different frequency bands provide comple-
mentary information about the activity in multiple
cortical regions. Decoding with the shuffled data
gives performance close to zero for all the frequency
bands (supplementary figure 3(b)). For the ipsilat-
eral cortical regions, we also find a negative cor-
relation between their decoding performance and
their distance ranks to the recording array. How-
ever, for the contralateral cortical regions, no sig-
nificant correlation is observed (figure 3(c)). When
comparing the decoding results of the activity from
ipsilateral cortical regions using different frequency
bands, we find that higher frequency bands tend to
have a steeper slope for the decoding performance
vs distance to the recording array (supplementary
figure 7).

Besides the frequency bands, we also examined
whether different recording channels encode nonre-
dundant information for decoding the activity of dif-
ferent cortical regions. Therefore, we evaluated the
decoding performance of the neural network model
using all six frequency bands from different numbers
of channels. Specifically, we performed ten-fold
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Figure 3. Decoding the activities of multiple cortical regions. (a) Decoded (colorful) vs ground truth (black)∆F/F activity of
different cortical regions in the contralateral (left) and ipsilateral (right) hemispheres for one mouse. (b) Decoding performance
evaluated for different cortical regions in the contralateral (top) and ipsilateral (bottom) hemispheres using different frequency
bands (δ: 1–4 Hz, θ: 4–7 Hz, α: 8–15 Hz, β: 15–30 Hz, γ: 31–59 Hz,Hγ : 61–200 Hz, and all six frequency bands). Each dot marks
the mean correlation evaluated by ten-fold cross-validation using the data recorded from one mouse. (c) Decoding performance
for different cortical regions in the contralateral (left) and ipsilateral hemispheres evaluated as a function of distance (rank
orders). Each dot is the mean correlation for one mouse given by ten-fold cross-validation. For ipsilateral hemisphere, the
decoding performance decreases as the distance rank to the electrode array increases (ρ=−0.676, P = 0.002, n= 18). For
contralateral hemisphere, no such correlation is observed (ρ=−0.163, P= 0.519, n= 18). Distances from the center of the array
to the center of each cortical region: i-M2 3.63 mm, i-M1 2.65 mm, i-S1 0.98 mm, i-PPC 0.7 mm, i-RSC 2.36 mm, i-Vis 2.49 mm,
c-M2 5.01 mm, c-M1 5.53 mm, c-S1 5.96 mm, c-PPC 5.37 mm, c-RSC 3.83 mm, c-Vis 6.32 mm. (d) Decoding performance for
different cortical regions in the contralateral (top) and ipsilateral (bottom) hemispheres using all the frequency bands, but
different numbers of recording channels. Each dot marks the mean ten-fold cross-validated correlation over all the recording
sessions for one mouse. Each line is the mean correlation averaged across three mice. For all the cortical regions, the decoding
performance increases as more recording channels are included (P < 0.05, n= 48, FDR correction).

cross-validation on the neural networkmultiple times
and each time we sequentially added the signal power
of all frequency bands from one random chan-
nel until all the channels were included. As shown
in figure 3(d), for all the cortical regions, increas-
ing the number of channels significantly improves
the decoding performance, suggesting that record-
ing channels of local neural potentials provide nonre-
dundant information about the activity from mul-
tiple cortical regions. On the other hand, decoding
with the shuffled data gives performance close to zero
for different number of included channels (supple-
mentary figure 3(c)).

3.4. Decoding of pixel-wise activity across cortex
Given that the local neural signals encode average
activity from individual cortical regions, which could
be recovered by the neural network model using
multi-channel signal power of different frequency
bands, we further investigated whether the pixel-
level activity across the whole dorsal cortex could
also be decoded using locally recorded neural sig-
nals. The same neural network model for decod-
ing the average activity in different cortical regions
was then employed to simultaneously decode the ten
IC scores at each time frame. The power traces of
all the six frequency bands from all the recording
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Figure 4. Decoding of the pixel-level cortex-wide brain activity. (a) Identified ICs for the cortical activities recorded in one mouse,
showing different functional modules of the cortical activity (IC 1–9) and the blood vessel activity (IC 10). (b) Decoded (red) and
ground truth (black) weighting scores of the observed cortex-wide activity onto the ten ICs shown in (a). (c) Reconstructed (top
rows) and ground truth (bottom rows) cortex-wide∆F/F activity for four different time intervals, each lasting for 5 s, as
indicated with different colors in (b). For visualization, the reconstructed and true cortex-wide brain activity are shown for every
0.5 s. (d) Decoding performance evaluated for different ICs for one recording session. Each dot marks the decoding performance
evaluated on one fold during the ten-fold cross-validation. The weighting scores for all the ten ICs could be successfully decoded.
(e) Decoding performance evaluated at pixel-level for all the cortical regions in the ipsilateral and contralateral hemispheres. Each
dot marks the mean ten-fold cross-validated correlation for individual pixels of one specific cortical region from one mouse.
(f) Pixel-wise decoding performance evaluated at individual cortical regions and displayed as a function of distance to the array
(rank orders). For ipsilateral hemisphere, the decoding performance decreases as the distance to the electrode array increases
(ρ=−0.649, P = 0.003, n= 18). For contralateral hemisphere, no correlation is observed (ρ=−0.074, P = 0.770, n= 18).

channels were used as inputs to the neural network.
An example of the decoded and ground truth scores
for the ten ICs from one held-out set is shown in
figure 4(B). The decoding result using shuffled data
is shown in supplementary figure 3(d). Based on the
decoded IC scores and the IC modules (figure 4(a)),
the pixel-level cortex-wide activity at each time frame
could be reconstructed. Examples of the reconstruc-
ted pixel-level cortex-wide activity during four rep-
resentative time intervals are shown in figure 4(c).
The reconstructed cortex-wide activity captured vari-
ous patterns of cortical activations in ground truth,
including both the synchronous and asynchronous
activations among different cortical regions. These
diverse activation patterns cannot be explained solely
by PC1 (see figure 4(c) and the supplementary

videos). To further quantify this observation,we com-
puted the correlation between the ground truth activ-
ity of each ICs and the PC1. The median correlations
between IC1, IC2 and IC8 to PC1 are close to zero,
showing that their activities are not strongly correl-
ated to PC1 (supplementary figure 8). These results
suggest that the model does not merely predict dom-
inant activity patterns showing activation around S1
and RSC. We found that all the ten IC scores could
be decoded using the locally recorded neural signals
(figure 4(d) and supplementary figure 9).We demon-
strated that the pixel-level cortex-wide activity could
be reconstructed for all the recording sessions (sup-
plementary videos 1–7). This reveals that the cor-
tical activations of distinct functionalmodules indeed
induce different responses in local cortical electrical
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signals, which could be in turn used to recover the
diverse cortex-wide activity patterns. In addition to
cortical activity, in all the mice, we observed one or
two ICs showing the hemodynamic activity (supple-
mentary figure 2). Our decoding results also show
that these hemodynamic activities could be decoded
from the neural recordings, which is mainly due to
the fact that hemodynamic activity and the neural
activity are often correlated [27]. Next, we examined
the pixel-level correlations between the decoded and
ground truth activities imaged using wide-field ima-
ging in individual cortical regions. We observed high
correlations between the decoded and the ground
truth data for all cortical regions (figure 4(e)) and
close-to-zero correlations using shuffled data (sup-
plementary figure 3(e)). The activities of cortical
regions closer to the array are better decoded than
those of the cortical regions far away from the array.
Consistent with the decoding of mean activity in each
cortical region, the pixel-wise correlation decreases as
the distance rank to the surface array increases for
the ipsilateral cortical regions, whereas for the con-
tralateral cortical regions no such correlation exists
(figure 4(f)).

4. Discussion

In this work, we performedmultimodal recordings of
local neural potentials and wide-field calcium ima-
ging in awake mice and developed a recurrent neural
network model to decode the large-scale spontan-
eous cortical activity from the locally recorded multi-
channel electrical signals. Both the averaged and the
pixel-level activity across the entire dorsal cortex
could be decoded, and the best decoding perform-
ance was achieved using all frequency bands of recor-
ded neural potentials. These results suggest that even
though the cortical electrical recording is a complex
signal contributed by various mechanisms at mul-
tiple spatial scales, the responses in individual fre-
quency bands across multiple recording channels still
provide important discriminative information about
the activity of different cortical regions. By develop-
ing a decoder model, the mixed information in the
electrical signal responses could be used to recover the
simultaneously recorded cortex-wide brain activity.

The cortical potentials have long been believed to
mainly detect local neural activities that are within a
sensing distance between 500µm to 1–3mm [28–30],
depending on the size of the electrode [28] as well as
the spatial correlation pattern of neural activity [29].
Consistent with this claim, for the decoding of mean
activity from individual cortical regions, we find a
decreasing decoding performance for the ipsilateral
cortical regions located ∼1.5–3 mm from the array.
Interestingly, for the contralateral cortical regions, the
decoding is still possible even though their activities

are unlikely to be directly detected by the neural elec-
trodes. We suspect that the successful decoding of
contralateral cortical regions is mainly due to the fact
that the spontaneous activities of same functional
cortical regions in both hemispheres are often correl-
ated (supplementary figure 10). Such correlated activ-
ity could arise from the anatomical connectivity [15]
and further orchestrated by neuromodulatory projec-
tions [16].

Our decoding results for the activity of individual
cortical regions show that even with single recording
channel, the decoding is possible (mean correlation
performance between 0.35 and 0.65 for different cor-
tical regions). By including more channels, initially
we observed an increase in decoding performance,
but the performance starts to saturate after the inclu-
sion of ten recording channels (mean correlation per-
formance between 0.6 and 0.75 for different cortical
regions). We suspect that this is mainly because of the
fact that the neural potentials in adjacent channels
are partially correlated due to the volume conduction
in the brain tissue [31, 32]. It has been shown that
the correlation between neural potentials from adja-
cent channels at different frequency bands decreases
as the distance increases [33, 34]. Even though the
cross-channel correlation at high frequency bands
is lower than that at low frequency bands, it does
not go below chance level even with a distance of
∼1.5 mm. However, our results empirically confirm
that even though the neural potentials from adjacent
channels are partially correlated, they still differen-
tially encode information about the cortical activit-
ies to some extent so that sequentially includingmore
recording channels tends to increase the decoding
performance. However, beyond a certain threshold
adding more channels does not further increase the
decoding performance.

For the decoding of cortex-wide brain activity,
instead of attempting to directly reconstruct the activ-
ity of individual pixels, we chose to perform PCA fol-
lowed by spatial ICA on the cortical activity and later
to decode IC scores to recover the cortex-wide activity
at pixel level. The adoption of this approachwas based
on both scientific and computational considerations.
First, the PCA effectively reduced the spatial dimen-
sions, while preserving a large proportion of variance
in cortical activity. Since the activity of each single
pixel was noisy, performing PCA reduced the noise,
leading to a more reliable estimate of the true activity.
Second, choosing the IC scores as network outputs
greatly reduced the parameters in the output layer
of the neural network model, prevented overfitting,
and speeded up model training. Finally, the spontan-
eous cortex-wide brain activity was decomposed into
a set of local and spatially organized cortical activa-
tion patterns based on neural activity, generating a
biologically meaningful decomposition that matches
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the brain dynamics. This decomposition provides
a good demixing of cortex-wide brain activity and
enables a tractable mapping from cortical neural
responses, which can be learned by the decoding net-
work model. Taken together, these results reveal that
the activation of different cortical functional mod-
ules are associated with distinct components in local
neural activity. By exploiting the mapping between
the two modalities, the decoding of cortex-wide
brain activity is possible from locally recorded neural
signals.

5. Conclusion

In this paper, we designed a neural network model
to show that both the mean activity of different cor-
tical regions and the pixel-level cortex-wide neural
activity can be decoded using locally recorded sur-
face potentials. These findings demonstrated that
the locally recorded neural potentials indeed con-
tain rich information for large-scale neural activ-
ity and the surface potential responses in different
frequency bands and different recording channels
provide distinct information about the large-scale
neural activity.
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