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MOTIVATION Two-photon microscopy has been widely used to record the activity of populations of indi-
vidual neurons at high spatial resolution in behaving animals. The ability to perform imaging for an extended
period of time allows the investigation of activity changes associated with behavioral states and learning.
However, imaging often accompanies shifts of the imaging field, including rapid (�100 ms) translation
and slow, spatially non-uniform distortion. To combat this issue and obtain a stable time series of the target
structures, motion correction algorithms are commonly applied. However, typical motion correction algo-
rithms for calcium imaging are limited to translation of images or image subfields and are unable to correct
more complex non-uniform distortions.
SUMMARY
Complex distortions on calcium imaging often impair image registration accuracy. Here, we developed a
registration algorithm, PatchWarp, to robustly correct slow image distortion for calcium imaging data.
PatchWarp is a two-step algorithm with rigid and non-rigid image registrations. To correct non-uniform im-
age distortions, it splits the imaging field and estimates the best affine transformation matrix for each of the
subfields. The distortion-corrected subfields are stitched together like a patchwork to reconstruct the distor-
tion-corrected imaging field. We show that PatchWarp robustly corrects image distortions of calcium imag-
ing data collected from various cortical areas through glass window or gradient-index (GRIN) lens with a
higher accuracy than existing non-rigid algorithms. Furthermore, it provides a fully automated method of
registering images from different imaging sessions for longitudinal neural activity analyses. PatchWarp im-
proves the quality of neural activity analyses and is useful as a general approach to correct image distortions
in a wide range of disciplines.
INTRODUCTION

Two-photon microscopy has become a popular technique in

neuroscience (Svoboda and Yasuda, 2006). It allows imaging

of neuronal structures and activity inside the intact brain at

high spatial resolution. The most common approach to measure

neural activity with two-photon microscopy is calcium imaging.

Calcium imaging is based on the principle that the intracellular

concentration of calcium ion increases when neurons increase

their firing rate. Therefore, calcium imaging allows an indirect

measurement of neuronal spiking activity using fluorescent cal-

cium indicators (Grienberger and Konnerth, 2012). Two-photon

calcium imaging has several advantages over the classical tech-

niques of recording neural activity using electrodes. For
Cell R
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example, calcium imaging allows simultaneous recording of

hundreds of neurons within a small area. It also allows longitudi-

nal tracking of the activity of those neurons over weeks and

months. Furthermore, specific cell types can be identified by tar-

geting the expression of genetically encoded calcium indicators

(GECIs) with viral or transgenic approach.

However, two-photon calcium imaging suffers frommotion ar-

tifacts, especially when it is applied to behaving animals. Such

motion artifacts must be removed to accurately quantify neural

activity. As such, a number of algorithms have been introduced

to correct motion artifacts of two-photon calcium imaging

data. Fast-motion (�100ms) artifacts mostly reflect spatially uni-

form translations as long as each frame is scanned quickly within

tens of milliseconds. These translations can be efficiently
eports Methods 2, 100205, May 23, 2022 ª 2022 The Author(s). 1
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corrected by rigid alignment of individual image frames to a tem-

plate image (Dubbs et al., 2016; Guizar-Sicairos et al., 2008; Mi-

tani and Komiyama, 2018; Pachitariu et al., 2017; Pnevmatikakis

and Giovannucci, 2017; Thévenaz et al., 1998). These rigid align-

ment methods have been extensively used for post hoc process-

ing of two-photon calcium imaging data.

In recent years, it has become possible to perform calcium im-

aging for a long period of time, even for a continuous few hours

without photobleaching due to improvement in calcium indica-

tors (Chen et al., 2013; Dana et al., 2019; Inoue et al., 2019;

Zhang et al., 2021). Improved stability and photosensitivity of

calcium indicators allow stable calcium imaging with minimum

laser power. Continuous, long calcium imaging experiments

are often necessary to understand the neural mechanisms of

cognition, state representation, and learning (Hattori and Ko-

miyama, 2022; Hattori et al., 2017, 2019). However, rigid align-

ments of motion artifacts are often not sufficient for such long

imaging sessions, because the image fields can slowly distort

over time. The slow image distortions can be caused by both bio-

logical and mechanical issues. For example, the shape of brain

tissue may slowly change due to behaviors, metabolic activity,

dilation of blood vessels, and liquid-reward consumptions.

Furthermore, mechanical instability of the animal stage or themi-

croscope can also introduce slow non-uniform image distor-

tions, particularly when the angle of the focus plane drifts over

time. These image distortions limit the time of stable continuous

imaging. Existing non-rigid motion-correction algorithms (Chen

et al., 2019; Giovannucci et al., 2019; Pachitariu et al., 2017;

Pnevmatikakis and Giovannucci, 2017) partially mitigate this

problem by splitting an imaging field of view (FOV) and esti-

mating the optimal translational shifts for the multiple subfields,

but such subfieldwise rigid translations are suboptimal to correct

non-uniform distortions.

To overcome this limitation of two-photon calcium imaging,

we developed a novel algorithm for the processing of two-

photon calcium imaging data. The algorithm, PatchWarp, is a

two-step algorithm with rigid corrections and warp corrections.

First, PatchWarp corrects uniformmotion artifacts by performing

rigid alignments of image frames to a template image by itera-

tively re-estimating the template image. Then, it corrects image

distortions by performing affine transformations on the subfields

of each image frame. We show that PatchWarp effectively cor-

rects image distortions of two-photon calcium imaging data of

both cell bodies and axons, either through a glass window or

an implanted gradient-index (GRIN) lens. Furthermore, we

show that PatchWarp can also register images from different im-

aging sessions for longitudinal across-session analyses of neural

activity. We openly share the software at https://github.com/

ryhattori/PatchWarp.

RESULTS

Non-uniform, slow image distortions during in vivo two-
photon calcium imaging
We first present example two-photon calcium imaging sessions

with non-uniform image distortions.We used a cell-body-imaging

session (�3.5 h of imaging; retrosplenial cortex; camk2-tTA:tetO-

GCaMP6s transgenic mouse; Mayford et al., 1996; Wekselblatt
2 Cell Reports Methods 2, 100205, May 23, 2022
et al., 2016) and an axon-imaging session (�20 min of imaging;

primary motor cortex; AAV-hSyn-FLEX-axon-GCaMP6s; Brous-

sard et al., 2018; in the basal forebrain of Chat-Cre transgenic

mouse; Rossi et al., 2011) as the examples. We compared the

spatial positions of neuronal structures between early and late

frames of each imaging session after correcting motion artifacts

by rigid motion corrections (Figure 1). These examples clearly

indicate the presence of non-uniform image distortions during im-

aging. Only some subfields are registered between early and late

frames with a rigid motion-correction algorithm. Corrections of

these image distortions are of critical importance for the analysis

of two-photon calcium imaging data because a region of interest

(ROI) drawn on a neuronal structure (e.g., cell body, axon bouton,

and spine) will be slowly displaced from the target structure in the

presence of image distortions.

PatchWarp algorithm for non-rigid image registration
with distortion correction
We developed a novel algorithm, PatchWarp, to robustly correct

both rigid translation and non-rigid distortion on two-photon

calcium imaging data. PatchWarp is a two-step algorithm that

consists of rigid corrections and warp corrections (Figure 2A).

The rigid motion correction was done by identifying the trans-

lational shift that maximizes the correlation between a template

image and each image frame. We estimated the optimal transla-

tional shifts with subpixel accuracy using a pyramid-based hill-

climbing algorithm (Adelson et al., 1984; Mitani and Komiyama,

2018). We found that, in some cases, especially during long im-

aging sessions, the net slow image distortions over the course of

an imaging session can be severe. In these cases of severe non-

rigid distortions, a single template image is often not sufficient to

accurately estimate translations of all image frames over time

because of the large difference between the template image

and the distorted frames. Therefore, PatchWarp iteratively up-

dates the template image during the rigid motion correction

(Figures 2B and 2C). The first template image is the average of

the frames around the middle of a session. This template is

used to motion correct the middle frames, and the template is

updated by averaging the motion-corrected middle frames.

Then, the motion correction proceeds bidirectionally from the

middle toward both ends. Along the way, the template image

is iteratively updated to reflect slow image distortions. This iter-

ative template updatingmakes the rigidmotion correction robust

on imaging sessions with slow image distortions.

The rigid motion-correction step is followed by a warp correc-

tion. As the examples in Figure 1 show, the image distortions on

two-photon calcium imaging data can be non-uniform across the

field of view (FOV). This non-uniformity makes it impossible for a

single geometric transformation function to fully register the im-

ages. Therefore, we implemented a ‘‘patchwork’’ approach

where a FOV is split into subfields and the optimal transforma-

tions are separately estimated for each subfield (Figure 2D).

The number of subfields can be adjusted for each imaging

condition based on its distortion pattern. We transformed the

coordinate of each patch using affine transformation. Affine tra-

nsformation is a geometric transformation that preserves

collinearity and ratios of distances. It can transform an

image by translation, rotation, scaling, and shearing. Affine

https://github.com/ryhattori/PatchWarp
https://github.com/ryhattori/PatchWarp
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Figure 1. Non-uniform slow image distortions during in vivo two-photon calcium imaging

(A) Max-intensity projection image of an example RSC-imaging session. The max-intensity projection of all frames after correcting only rigid motion artifacts (left)

and the max-intensity projections of the first (red) and the last (cyan) 14-min frames in the 3.5-h session after correcting only rigid motion artifacts (right) are

shown. The second and third rows show the zoomed images that highlight the subfields where rigid corrections sufficiently (second row) or insufficiently (third

row) registered early and late frames. The colors on the right panels are intentionally saturated with an arbitrary threshold to highlight the image overlaps.

(B) Max-intensity projection image of an example cholinergic axon-imaging session. The max-intensity projection of all frames after correcting only rigid motion

artifacts (left) and the max-intensity projections of the first (red) and the last (cyan) 1.4-min frames in the 20-min session after correcting only rigid motion artifacts

(right) are shown.
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transformation of an image is done by a matrix multiplication be-

tween the original image coordinate and an affine transformation

matrix. The original image can be transformed to match the

transformed coordinate by subpixel bilinear interpolation such

that the image spatially fits the new coordinate. By using the

optimal affine transformation matrix for each patch, we can cor-

rect non-uniform image distortions that exist in the original full

FOV. The optimal affine transformation matrix of each patch

can be estimated by a gradient-based algorithm that aims at

finding the optimal transformation matrix that maximizes the

enhanced correlation coefficient (ECC) between a template im-

age and an affine-transformed target image (Evangelidis and

Psarakis, 2008; Psarakis and Evangelidis, 2005). We created

the template image by averaging motion-corrected frames

around the middle of a session (Figures 2E and 2F). Unlike the

rigid motion-correction step, where the template image is itera-

tively updated, we use only a single template for all frames in a

session for the second step of non-rigid warp correction to

map all frames onto a single reference geometry. This is possible

because of the flexible geometric transformation by the patch-

work affine transformations. The source images to calculate
the transformation matrix were created by downsampling all

frames by non-overlapping moving averaging of 500 frames.

Therefore, the total number of affine transformations that we

need to estimate is (no. of patches) 3 (no. of downsampled

frames).

One remaining issue is that different neurons within each patch

change calcium signals differently across time (i.e., the relative

brightness across different cells is dynamic), which can affect

the correlation between the template and the target images. To

make the estimations of optimal transformations robust against

the variability of calcium levels across neurons, we normalized

the intensity of each pixel by dividing the pixel value by the mean

intensity of the nearby pixels (Figures 2E and S1). This local inten-

sity normalization allows the gradient-based algorithm to focus

only on the cellular structures while ignoring calcium dynamics.

The PatchWarp pipeline corrected the non-uniform image dis-

tortions of the example sessions from Figure 1 (Figure S2).

Performance of PatchWarp algorithm
To examine the performance and general applicability of the

PatchWarp algorithm, we used three different in vivo two-photon
Cell Reports Methods 2, 100205, May 23, 2022 3
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Figure 2. PatchWarp algorithm for correcting rigid motion artifacts and slow image distortions

(A) PatchWarp is a two-step algorithm. The first step corrects the rigid motion artifacts, and the second step corrects the slow image distortions.

(B) Schematic of the rigid motion correction. The first template image is created by averaging middle frames in a session, and these middle frames are registered

to the mean image. The template image is updated by averaging the registered middle frames, and the updated template is used to register other frames.

(C) Timeline of the rigid motion correction. The rigid motion correction proceeds bidirectionally from the middle of a session. The template images are iteratively

updated after specified frame number to reflect slow distortions on the template images.

(D) Warp correction is done by splitting a FOV into small overlapping patches and finding the optimal affine transformation matrix for each patch. Each patch is

transformed by subpixel bilinear interpolation to fit the transformed coordinate.

(E) Schematic of the warp correction. Frames in the template and the target blocks are averaged, and the mean images are normalized by local intensity. The

normalized images are split into patches, and an affine transformation that maximizes ECC between the template image and the transformed target image is

estimated for each patch. The obtained transformations are applied to individual frames in the target block.

(F) Timeline of the warp correction. Warp correction uses a fixed-template image that is created by averaging the middle frames of a session. Optimal affine

transformations are independently estimated for each target block. The target block size should be determined based on the distortion speed in the imaging data.

See also Figures S1 and S2.
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calcium imaging conditions that were recorded from awake-

behaving mice. The first condition is the imaging of neuronal

cell bodies from six different dorsal cortical areas (ALM, ante-

rior-lateral motor area; pM2, posterior secondary motor cortex;

PPC, posterior parietal cortex; RSC, retrosplenial cortex; S1, pri-

mary somatosensory cortex; V1, primary visual cortex; n = 1 ses-

sion from each area; camk2-tTA:tetO-GCaMP6s transgenic

mice) through glass windows. The second condition is the imag-

ing of neuronal cell bodies from a ventral cortical area (OFC,
4 Cell Reports Methods 2, 100205, May 23, 2022
orbitofrontal cortex; n = 6; camk2-tTA:tetO-GCaMP6s trans-

genic mice) through GRIN lenses that were implanted in the

brains. The third condition is the imaging of axons from a dorsal

cortex (M1, axons of basal forebrain cholinergic neurons imaged

in the primary motor cortex; n = 6; AAV-hSyn-FLEX-axon-

GCaMP6s in Chat-Cre transgenic mice) through glass windows.

We used two metrics to quantify the registration performance,

‘‘mean max-intensity difference (mMD)’’ and ‘‘mean correlation

with mean image (mCM).’’ To calculate mMD, the maximum
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Figure 3. Performance of rigid corrections of motion artifacts

(A) Max-intensity difference between pre- and post-rigid motion corrections. Max-projection images of raw frames, motion-corrected frames, and their intensity

difference are shown. The bar graph indicates the mean max-intensity difference (mMD) within each FOV. mMDwas negative in all sessions, indicating that motion

artifactsconsistentlydecreasedafter rigidmotioncorrections.Eachcircle indicates the result froman imagingsession. Theerrorbarsare95%confidence interval (CI).

(B) Mean images of raw frames, motion-corrected frames, and the mean correlations between the mean images and individual frames of each condition (self-

mCM). Self-mCM increased in all sessions, indicating that motion artifacts consistently decreased after rigid motion corrections. Each thin gray line indicates the

comparison of the same imaging session across conditions. The error bars are 95% CI.

See also Figure S3.
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projection image across all frames is calculated for pre- and

post-registered images separately. mMD is the difference in

the means of all intensity values across pixels between these

two images (mMD = post-mean � pre-mean). The mean of

max-projection intensities across pixels takes a larger value in

the presence of motion artifacts because movement of a

neuronal structure across frames increases the total number of

pixels to which the neuronal structure with calcium signals con-

tributes to the max-projection image. Therefore, negative mMD

indicates reduced motion artifacts after registration. Note that

we downsampled frames by 50-frame, non-overlapping moving

averaging before creating the max-projection images to sup-

press the contribution of image noise to the max-projection

intensity. The second metric, mCM, is the mean correlation be-

tween individual frames and amean image. mCM increases after

successful registration because motion artifacts reduce the sim-

ilarity between individual frames and the mean image. The mean

image with which individual frames are compared for the calcu-

lation of correlation coefficient can be the mean of either pre- or

post-registered frames. We define mCM as ‘‘self-mCM’’ when

image frames are compared with their own mean image and as

‘‘cross-mCM’’ when image frames are compared with the

mean image of the other compared condition (e.g., correlation

between individual pre-registered frames and the mean image

of post-registered frames).

First, we examined the performance of the rigid motion-

correction step. In all imaging sessions across the three different
imaging conditions, mMD was consistently negative (Figure 3A).

Furthermore, both self-mCM (Figure 3B) and cross-mCM (Fig-

ure S3) also consistently improved after registration. Therefore,

rigid motion-correction step significantly reduced motion arti-

facts in all imaging sessions (Video S1).

Next, we examined the performance of the warp-correction

step. We comparedmMD andmCMmetrics between images af-

ter the rigid motion-correction step and images after both the

rigid motion- and warp-correction steps. We found that mMD

([two-step mean] � [rigid mean]) was consistently negative in

all sessions (Figure 4A). Furthermore, both self-mCM (Figure 4B)

and cross-mCM (Figure S4) consistently improved in all ses-

sions, and the improvement on the self-mCM was observed

across all patches (Figure S5). These results indicate that slow

image distortions are ubiquitous in in vivo two-photon calcium

imaging data from awake-behaving mice, and PatchWarp suc-

cessfully corrects the distortions (Videos S2 and S3). The consis-

tent improvement across eight different cortical areas (ALM,

pM2, RSC, PPC, S1, V1, OFC, andM1) with three different imag-

ing conditions (cell bodies or axons through glass windows and

cell bodies through GRIN lenses) indicate the general applica-

bility of PatchWarp algorithm on two-photon calcium data.

We also analyzed the processing time of the PatchWarp pipe-

line on a standard desktop PC (Intel Core i7-9800X, 32 GB RAM,

Windows 10). The processing speed depends on the number of

available central processing unit (CPU) cores because the algo-

rithm is parallelized at both rigid- and warp-correction steps. We
Cell Reports Methods 2, 100205, May 23, 2022 5
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Figure 4. Performance of warp corrections of slow image distortions

(A) Max-intensity difference between imageswith only rigidmotion corrections and imageswith both rigid andwarp corrections. Max-projection images of frames

with only rigid motion corrections, frames with both rigid and warp corrections, and their intensity difference are shown. The bar graph indicates the mMD within

each FOV. mMD was negative in all sessions, indicating that warp corrections consistently improved the frame-by-frame registrations. Each circle indicates the

result from an imaging session. The error bars are 95% CI.

(B) Mean images of frames with only rigid motion corrections, frames with both rigid and warp corrections, and the mean correlations between the mean images

and individual frames of each condition (self-mCM). Self-mCM increased in all sessions, indicating that warp corrections consistently improved the frame-by-

frame registrations. Each thin gray line indicates the comparison of the same imaging session across conditions. The error bars are 95% CI.

See also Figures S4 and S5.
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plot the processing time of six imaging sessions when eight CPU

cores are used (Figure 5). The processing time of the rigid correc-

tion step was shorter than the imaging time (29-Hz frame rate).

Although the processing time was longer than the imaging time

when warp corrections were applied, the processing time is still

within a reasonable range, even for these exceptionally long im-

aging sessions. Note that the processing time can be substan-

tially sped up if users have access to computing clusters with

many CPU cores.

Performance comparison to existing non-rigid
registration algorithms
We compared the performance of PatchWarp with other existing

non-rigid image-registration algorithms. These non-rigid regis-

tration algorithms for calcium imaging were validated with either

two-photon images (Giovannucci et al., 2019; Pachitariu et al.,

2017; Pnevmatikakis and Giovannucci, 2017) or one-photon

GRIN lens images in the past (Chen et al., 2019; Lu et al.,

2018; Table S1). Suite2p (Pachitariu et al., 2017) and

CaImAn (Giovannucci et al., 2019) are two of the most popular

software for the processing of two-photon calcium imaging

data. Therefore, we focus our comparisons on these two algo-

rithms. Both toolboxes offer non-rigid motion-correction func-

tions. The non-rigid motion-correction algorithm in CaImAn is

called NoRMCorre (Pnevmatikakis and Giovannucci, 2017),

but we call it CaImAn here for simplicity. Non-rigid registration
6 Cell Reports Methods 2, 100205, May 23, 2022
algorithms in Suite2p and CaImAn split a FOV into patches as

in the warp-correction step of PatchWarp. However, both Sui-

te2p and CaImAn estimate only the translational shift of each

patch. In contrast, the warp-correction step of PatchWarp esti-

mates affine transformations that can transform each patch by

not only translation but also rotation, scaling, and shearing.

Therefore, theoretically, PathWarp can correct more complex

distortions than Suite2p and CaImAn. Furthermore, Suite2p

and CaImAn use cross-correlation or phase correlation to esti-

mate the best translation, while PatchWarp uses ECC. ECC

has the property that it is invariant to changes in bias, gain,

brightness, and contrast (Evangelidis and Psarakis, 2008). The

use of ECC, along with the local intensity normalization (Fig-

ure S1), may also improve the registration performance.

We compared the processing time and the registration accu-

racy of their non-rigid registrations. We used Python versions

of Suite2p (v.0.9.0) and CaImAn (v.1.9.3) for this comparison.

To make a consistent comparison, we used the same number

of patches and the same patch size for each imaging session

across the three algorithms, and they were run on the same

PC (Intel Core i7-9800X, 32GBRAM,Windows 10). The process-

ing time of PatchWarp was shortest on 5/6 sessions and was

slightly longer than that of Suite2p on one session with an excep-

tionally large number of frames (379,127 frames; Figure 6A).

Furthermore, mMD relative to PatchWarp was positive on most

images from Suite2p and CaImAn (Figure 6B). Self-mCM was



Figure 5. Processing speed of PatchWarp pipeline

Processing time of PatchWarp pipeline on six imaging sessions (cell body im-

aging, glass window). The pipeline was run on a standard desktop PC. The top

and bottom x axes indicate the frame number and the corresponding imaging

time from each imaging session. The dashed line represents the unity line for

the registration time of the y axis and imaging time of the x axis. The rigid regis-

tration takes less time than the imaging time. The registration time exceeds the

imaging time when warp corrections are implemented, but the total time is

within a reasonable range.
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consistently highest with PatchWarp in all imaging sessions (Fig-

ure 6C). Thus, at least in the datasets tested here, PatchWarp

outperforms the commonly used algorithms for non-rigid motion

correction.

PatchWarp algorithm for fully automatic across-session
registration
One of the major advantages of two-photon calcium imaging

over electrode recordings of neuronal activity is that we can reli-

ably track the identical population of neurons across many days.

On each day, experimenters try to find the consistent focal plane

by adjusting the position of an objective lens. However, some

variability in the position of the focal plane across days is inevi-

table (e.g., x-y-z coordinate, rotation angle of the FOV, and rota-

tion angle of the objective lens). In particular, the difference in the

rotation angle of the objective lens introduces non-uniform im-

age distortion between images from different imaging sessions.

Furthermore, the relative positions of neuronal structures in a

FOV can also slowly change across days. These non-uniform

image distortions necessitate an image-distortion-correction al-

gorithm to optimally register different imaging sessions for longi-

tudinal neural activity analyses. We devised a two-step

PatchWarp method to estimate the optimal transformation that

can be used to transform images from a session to the coordi-

nate of another session. Unlike the within-session registration

that uses individual frames, the inputs to the algorithm for

across-session registration are summary images (e.g., mean im-

age and max-projection image) from each imaging session. As

the demonstration, we used two RSC imaging sessions that
were acquired on different days and estimated the transforma-

tion that optimally transforms the session H image to the session

G coordinate (Figures 7A and 7B). We artificially made the regis-

tration problem harder than the original condition by adding

shifts (translation and rotation) and barrel distortion to demon-

strate the robustness of our algorithm, even in the presence of

large displacements and complex distortion.

The first step finds the optimal Euclidean transformation that

maximizes ECC between the session G summary images and

the transformed session H summary images. The whole FOVs

are used without splitting them into patches in this first step.

The Euclidean transformation is a special case of affine transfor-

mation with reduced number of free parameters (six and three

parameters in affine and Euclidean transformation matrices,

respectively), and the transformation is limited to translation

and rotation. Unlike the rigid motion-correction step of the

within-session PatchWarp processing, where the corrections

were limited to translations, we use Euclidean transformations

here because mismatch in the rotation angles of the imaging

FOVs is common across different imaging sessions. To ensure

the robust estimation, even in the presence of a large displace-

ment between the two imaging sessions, we took the pyramid-

based approach by sequentially updating the transformation

matrix from the upper-level pyramids at the gradient-based

parameter estimation step (see STARMethods). The transforma-

tion that maximizes ECC between the session G images and the

transformed session H images was obtained. We locally normal-

ized the intensity of the input summary images before calculating

ECC to focus on neuronal structures instead of calcium levels,

similarly to the within-session warp-correction method (Fig-

ure S1). We use two types of summary images (mean and

max-projection images) and obtain two transformation matrices.

We select the one of them that results in a higher ECC and apply

it to both of the session H summary images.

The second step finds the optimal affine transformations that

maximize ECCs between the session G patches and the trans-

formed session H patches. Large displacements are already cor-

rected by the first Euclidean transformation, so the goal of this

second set of transformations is to correct the non-uniform im-

age distortions between the two imaging sessions. The affine

transformation matrices with six parameters can transform im-

age patches by shearing and scaling in addition to translation

and rotation. By selecting the transformation matrix with larger

ECC for each patch from the mean and the max-projection im-

age pairs, we can optimally correct non-uniform image distor-

tions, even when a patch lacks sufficient landmarks in one of

the summary images.

To quantify the across-session registration performance, we

ran the algorithm on six longitudinally imaged neural populations

(cell body imaging and glasswindow). For each population, sum-

mary images froma later sessionwere registered to the summary

images from the earlier session. The image correlation between

early and late sessions consistently improved (Figure 7C). The re-

sults also showed that registration performancewas better when

both rigid and non-rigid corrections were applied.

The two-step PatchWarp algorithm for across-session regis-

tration provides us with the transformation matrices that can

optimally transform the session H images to the session G
Cell Reports Methods 2, 100205, May 23, 2022 7
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Figure 6. Performance comparison to existing non-rigid registration algorithms

(A) Comparisons of the processing time on the same six imaging sessions (cell body imaging, glass window) run on a standard desktop PC. The top and bottom x

axes indicate the frame number and the corresponding imaging time from each imaging session. The dashed line represents the unity line for the registration time

of the y axis and imaging time of the x axis.

(B) mMD between images with PatchWarp registrations and images with non-rigid registrations of either Suite2p or CaImAn. mMDwas positive in most sessions

except for two Suite2p sessions, indicating the generally higher registration accuracy with PatchWarp. Each circle indicates the result from an imaging session.

The error bars are 95% CI. The y axis is symmetric log scale where the log scale is applied to both positive and negative values.

(C) Mean correlations between the mean images and individual frames (self-mCM) for images that were processed by PatchWarp or non-rigid registration algo-

rithms of Suite2p and CaImAn. Self-mCMwas highest with PatchWarp for all imaging sessions, indicating that registration accuracy was consistently higher with

PatchWarp. Each thin gray line indicates the comparison of the same imaging session across conditions. The error bars are 95% CI.
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coordinate. The obtained transformation can be applied to any

images in the session H coordinate (e.g., individual frames;

summary images, such as mean and max projection; correla-

tion map, and ROI mask), and the transformed images can

be directly compared with the session G images for longitudinal

activity analyses. We provide functions to calculate the trans-

formation and apply the transformation to other images in our

software.

DISCUSSION

Removal of activity-independent artifacts from calcium imaging

data is critical to accurately interpret data. For example, rigid

motion artifacts may be misinterpreted as movement-related

neural activity, and slow image distortions may be misinter-

preted as slow activity changes over time. These artifacts can

have profound impacts on the neural activity analyses and

potentially lead to incorrect scientific conclusions. Here, we

developed a novel algorithm, PatchWarp, that robustly corrects

both the rigid motion artifacts and slow image distortions. We
8 Cell Reports Methods 2, 100205, May 23, 2022
publicly share the software at https://github.com/ryhattori/

PatchWarp for the community.

The warp-correction step of PatchWarp splits a FOV into

smaller patches, and optimal affine transformation is estimated

for each patch. Two existing and popular motion-correction al-

gorithms for two-photon calcium imaging data, Suite2p and

CaImAn (NoRMCorre), offer non-rigid registration algorithms

that similarly split a FOV into small patches. However, the trans-

formation of each patch in these published methods is limited to

translational shifts. Although translational shifts of many small

patches can approximate shearing transformation, the accuracy

is suboptimal. The rigidity on each patch limits the capacity of the

fine-scale distortion corrections unless each patch is very small,

and the patch cannot be too small, given the limited number of

spatial landmarks. In contrast, PatchWarp applies an affine

transformation to each patch. Affine transformation can trans-

form each patch not only by translation but also rotation, scaling,

and shearing. Utilizing the diverse transformational capacity of

the affine transformation, we achieved a higher registration ac-

curacy than Suite2p and CaImAn (NoRMCorre) (Figure 6).

https://github.com/ryhattori/PatchWarp
https://github.com/ryhattori/PatchWarp
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Figure 7. PatchWarp algorithm for fully automatic across-session registration

(A) Registration between different imaging sessions for longitudinal analyses (red: session G images; cyan: session H images). Mean- andmax-projection images

were used as the inputs to the algorithm. The first step finds the optimal Euclidean transformation that corrects large displacements with rigidity (translation and

rotation). The second step finds the optimal affine transformations for small patches to correct non-uniform distortions between the two image sessions. The

transformations are separately estimated for mean and max-projection images, but only one transformation with larger ECC between G and transformed H,

ðrG; EðHÞ;rGi ;AifEðHi ÞgÞ, is selected at each step. The obtained transformations can be used to transform any images from session H to the session G coordinate for

longitudinal neural activity analyses.

(B) Zoomed images of the subfield that is indicated by yellow dashed lines in (A). This subfield highlights the necessity of the warp-correction step.

(C) Correlations of mean or max-projection images between early and late imaging sessions of the same neural population (six different FOVs, cell body imaging,

glass window). The correlation is compared between pre-registration (raw), post-Euclidean transformation (rigid), and post-patchwork affine transformations

(warp). Warp correction consistently improved the registration accuracy between different imaging sessions. Each thin gray line indicates the comparison of the

same imaging session across conditions. The error bars are 95% CI.
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Despite the computational complexity of finding optimal affine

transformation, we demonstrated the computational efficiency

of our algorithm by parallelizing the registration steps. Although

the flexibility of the affine transformation is likely the primary

factor that contributed to the high registration accuracy of

PatchWarp, other algorithmic differences between different

software might have also contributed to the differences in the

registration accuracy. For example, the template matching at

the non-rigid registration steps use different objective functions

between different algorithms (ECC for PatchWarp, phase corre-

lation for Suite2p, and cross-correlation for CaImAn). Further-
more, PatchWarp is unique in applying local intensity normaliza-

tion that normalizes the temporal signal dynamics (Figure S1).

The warp correction step of PatchWarp relies on a parametric

image alignment using ECC (Evangelidis and Psarakis, 2008;

Psarakis and Evangelidis, 2005). The ECC algorithm searches

for an affine transformation that registers images using a

gradient-based method. We adapted the ECC-based algorithm

to a two-step piecewise scheme and optimized the image-pro-

cessing steps such that it stably works on temporally dynamic

calcium imaging data. Although a similar piecewise affine trans-

formation method was previously used to register static MRI
Cell Reports Methods 2, 100205, May 23, 2022 9
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images (Batchelor et al., 2005; Pitiot et al., 2003), we showed that

PatchWarp reliably works on calcium imaging data, a more chal-

lenging dataset with temporally dynamic signals. There are also

various diffeomorphic mapping algorithms for non-rigid registra-

tions (Batchelor et al., 2005; Beg and Khan, 2006; Vercauteren

et al., 2009), and future studies should test their accuracy and

computational efficiency on two-photon calcium imaging data.

We also developed a PatchWarp approach for fully automated

across-session image registrations. Registration across images

from different imaging sessions is necessary to longitudinally

analyze how individual neurons or neuronal structures change

activity patterns over days. Since our method uses only the sum-

mary images from each session, the estimation of the optimal

transformation matrices can be obtained instantly with only

3–6 s on standard desktop computers. By applying the obtained

transformations, we can transform images to the coordinate of

the other session for longitudinal neural activity analyses.

Limitations of the study
Although PatchWarp is robust in correcting rigid motion artifacts

and slow image distortions, we still observed residual motion ar-

tifacts in some cases, especially when the neuronal structures

are very close to the midline sinus. The residual motion artifacts

are due to fast dilation of the midline sinus, which occasionally

happens in behaving mice. The dilation of sinus introduces fast

image distortions. Since PatchWarp estimates the affine trans-

formations using mean of multiple frames for the robustness

and the computational efficiency, it mostly focuses on correcting

slow image distortions. Although users can apply PatchWarp to

correct fast image distortions by using smaller number of frames

to make the mean image to register to the template image, the

accuracy of warp correction could be compromised if each

mean image does not contain sufficient neuronal structures

with visible calcium signals. The dynamic nature of calcium

signals introduces uncertainty about the availability of sufficient

signals on each mean image. If users need to correct fast image

distortions, one potential solution is to co-express stable red

fluorescence indicators (e.g., tdTomato; Drobizhev et al., 2011;

Shaner et al., 2004) and use the signals for the registration

instead of using the dynamic calcium signals. Calcium sensors

with high baseline fluorescence, such as jGCaMP7b (Dana

et al., 2019) and jGCaMP8 series (Zhang et al., 2021), may also

work for robust fast distortion corrections. Alternatively, experi-

menters should always try to minimize the contributions of the si-

nus dilations by applying enough pressure when they implant a

glass window onto the brain or avoid selecting a FOV near the

midline sinus.
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Wang, F. (2018). MIN1PIPE: a miniscope 1-photon-based calcium imaging

signal extraction pipeline. Cell Rep. 23, 3673–3684.

Mayford, M., Bach, M.E., Huang, Y.Y., Wang, L., Hawkins, R.D., and Kandel,

E.R. (1996). Control of memory formation through regulated expression of a

CaMKII transgene. Science 274, 1678–1683.
Mitani, A., and Komiyama, T. (2018). Real-time processing of two-photon cal-

cium imaging data including lateral motion artifact correction. Front. Neuroin-

form. 12, 98.

Pachitariu, M., Stringer, C., Dipoppa, M., Schröder, S., Rossi, L.F., Dalgleish,
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housed in disposable plastic cages with standard bedding in a room on a reversed light cycle (12 h/12 h). All procedures were

performed following protocols approved by the UCSD Institutional Animal Care and Use Committee (IACUC) and guidelines of

the National Institute of Health.

METHOD DETAILS

Surgery
Surgical procedures were performed as previously described (Hattori and Komiyama, 2022; Hattori et al., 2019). Mice were contin-

uously anesthetized with 1%–2% isoflurane during surgery. We subcutaneously injected dexamethasone (2mg/kg). We exposed the

dorsal skull, removed the connective tissue on the skull surface using a razor blade, and performed craniotomy. For axon imaging

experiments, �1 mL of AAV-hSyn-FLEX-axon-GCaMP6s virus (Broussard et al., 2018) was unilaterally injected in the basal forebrain

of ChAT-Cre mice (�0.3 mm posterior and �1.7 mm lateral from bregma, 5.0 mm deep from the brain surface). After the injection, a

glass window was secured on the edges of the remaining dorsal skull using 3M Vetbond (WPI), followed by cyanoacrylate glue and

dental acrylic cement (Lang Dental). For GRIN lens imaging experiments, we first aspirated the cortex above the target coordinate up

to 1.0 mm depth using a blunt end 30G needle (0.312 mm O.D., SAI Infusion Technologies). Then, a GRIN lens (500 mm diameter;

Inscopix, GLP-0561) was unilaterally implanted above the deep layer of lateral OFC ((�2.45 mm lateral and �2.6 mm anterior

from bregma, 1.5 mm deep from the brain surface). The implanted GRIN lens was secured using 3 M Vetbond (WPI) on the skull,

followed by cyanoacrylate glue and dental acrylic cement (Lang Dental). After the implantation of either a glass window or a GRIN

lens, a custom-built metal head-bar was secured on the skull above the cerebellum using cyanoacrylate glue and dental cement.

Mice were subcutaneously injected with Buprenorphine (0.1 mg/kg) and Baytril (10 mg/kg) after surgery.

Two-photon calcium imaging
Neural calcium signals were recorded using two-photon microscopes (B-SCOPE, Thorlabs) with a 163, 0.8 NA water immersion

objective lens (Nikon) and 925 nm lasers (Ti-Sapphire laser, Newport) from head-fixed behaving mice. ScanImage (Vidrio Technol-

ogies) running on MATLAB (MathWorks) was used for image acquisitions. Images (5123 512 pixels) were continuously recorded at

�29 Hz during each imaging session. Cell body imaging sessions were recorded for 1.5–3.5 h while axon imaging sessions were re-

corded for �20 min. Imaging was performed at superficial layers of cortex for glass window imaging, and GRIN lens imaging was

performed at deep layers of OFC. The central coordinates of FOVs from bregma were 1.7 mm lateral and 2.25 mm anterior for

ALM, 0.4 mm lateral and 0.5 mm anterior for pM2, 0.4 mm lateral and 2 mm posterior for RSC, 1.7 mm lateral and 2 mm posterior

for PPC, 1.8 mm lateral and 0.75 mm posterior for S1, 2.5 mm lateral and 3.25 mm posterior for V1.

Template re-estimation for rigid motion correction
Rigid motion artifacts during calcium imaging were corrected by registering individual frames to a template image. The template im-

age was iteratively updated during the motion correction process. These iterative re-estimations of the template image improve the

robustness of motion correction performance, especially in the presence of slow image distortion over time. First, we created the 1st

template image (T1) by averaging the middle 2,500 frames of an imaging session. Then, we registered the 2,500 frames to the tem-

plate T1 and updated the T1 by averaging the motion-corrected 2,500 frames ðT 0
1Þ. Each imaging session was temporally split into 5

blocks, and T 0
1 was used as the template image to register frames in the 3rd block. After registering all frames in the 3rd block, we

created 2 new template images by averaging the first and the last 2,500 motion-corrected frames in the 3rd block (T 0
2 and T 0

3, respec-

tively). The template T 0
2 was used to register all frames in the 2nd block, and the template T 0

3 was used to register all frames in the 4th

block. Again, we created new template images by averaging the first 2,500 frames of the 2nd block (T 0
4) and averaging the last 2,500

frames of the 4th block ðT 0
5Þ. The template image T 0

4 was used to register frames in the 1st block, and the template image T 0
5 was used

to register frames in the 5th block.

Registration algorithm for rigid motion correction
Individual frames were shifted along x and y directions such that the correlation between each frame and a template image is maxi-

mized. To estimate the best translational shift of each frame, pyramid method (Adelson et al., 1984) and hill climbing algorithm were

combined as reported previously (Mitani and Komiyama, 2018). First, both the template image and individual frames were down-

scaled to the level 3 pyramid representation (1/8 downscaling factor). Hill climbing algorithm finds the best translation that maximizes

the correlation between each frame and the template. Then, the algorithm moves to the level 2 pyramid representation (1/4 down-

scaling factor) and uses the translation from the level 3 as the initial estimate of the translational shift to obtain the best shift at the level

2. It repeats the same procedure at the level 1 pyramid representation (1/2 downscaling factor) and lastly at the level 0 (original image

resolution). The registration was performed in subpixel accuracy by fitting a quadratic function and interpolation. The pixel intensities

of both the template image and individual frames were rank transformed before running the pyramid-based hill climbing algorithm.

Registration algorithm for slow distortion correction
We performed affine transformations of images to correct slow image distortion. However, image distortions in calcium imaging

data are usually not uniform across the FOV, making it impossible to correct the distortion by a single affine transformation matrix.
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To correct non-uniform distortions, we developed a patchwork approach of affine transformation. Our approach assigns different

affine transformation matrices to different subfields of an image, and the transformed subfields are stitched together. This patchwork

approach efficiently and robustly corrects non-uniform image distortions in calcium imaging data.

We split each FOV of the size H3W (pixels) into M3M square subfields (patches). We used M = 8 for cellular resolution imaging

and used M = 12 or 15 for axon imaging. We used larger M for axon imaging because axons were more dynamic and the movements

were independent from each other. Each patch had 0:33H
M overlapping pixels with its vertically adjacent patches and 0:33 W

M over-

lapping pixels with its horizontally adjacent patches. After affine transformation of each patch, all patches were stitched together by

averaging the intensity of the overlapping pixels.

The template image for each patch was created by averaging the middle 5,500 frames of an imaging session. We then temporally

downsampled all frames by non-overlapping moving averaging of 500 frames. Optimal affine transformation for each patch was ob-

tained for each of the downsampled frames. This downsampling significantly decreases the computation time and did not affect our

results because the slow image distortions were negligible within 500 frames (�17 sec,�29Hz). Modern 2-photonmicroscopy scans

a FOV using a resonant scanner with high-frequency scanning rate (�10k Hz), leading to a high frame rate. At high frame rates

(>10 Hz), motion artifacts induced by body movements of behaving animals are mostly image translations with minimal distortions.

One exceptional case where fast distortion occurs is when the shape of the imaged brain tissue changes during the motion (e.g. by

dilation of midline sinus) as we discussed in the discussion section. Such potential fast distortions can typically be prevented at the

surgery step for 2-photon microscopy by applying a pressure on the imaging area when the glass window is implanted.

An affine transformation matrix for a 2D image is given by the following 3 3 3 matrix with 6 parameters;

A =

0
@

a1 a2 a3
a4 a5 a6
0 0 1

1
A (Equation 1)

The relationships between the original coordinate (x, y) and the transformed coordinate ðx0; y0Þ is given by
0
@

x0

y0

1

1
A =

0
@

a1 a2 a3
a4 a5 a6
0 0 1

1
A$

0
@

x
y
1

1
A (Equation 2)

To find the optimal affine transformation for correcting image distortion of each patch, we used a gradient-based algorithm

as described previously (Evangelidis and Psarakis, 2008). Our objective is to minimize the difference between a template image

patch and a warped image patch, but we want to focus on the geometric difference while ignoring brightness difference because

brightness changes across frames on calcium imaging data. We can define the loss function of the gradient-based algorithm as

follows;

LðaÞ =

�����

�����
pt

jjptjj
� pwðaÞ

jjpwðaÞjj

�����

�����
2

(Equation 3)

where || || denotes L2 norm, a = [a1, a2, a3, a4, a5, a6] is a vector of parameters for the affine transformation, pt is a vector with intensity of

all pixels in the template patch, pw(a) is a vector with intensity of all pixels in the patch that was warped by an affine transformation

matrix with the parameters a. pt and pwðaÞ denote the zero-centered vectors of pt and pw(a), respectively. The pixel intensity nor-

malizations of both the template and warped images in [Equation 3] ensure that the loss function is invariant to changes in bias, gain,

brightness, and contrast. Thus, we can selectively minimize geometric difference using the loss function. We can equivalently ex-

press the [Equation 3] as follows;

LðaÞ = 2 � 2 � pt$pwðaÞ
jjptjjjjpwðaÞjj

(Equation 4)

Therefore, minimizing L(a) is equivalent to maximizing the following index;

rðaÞ =
pt$pwðaÞ

jjptjjjjpwðaÞjj
(Equation 5)

where pt and pwðaÞ are zero-centered vectors of pt and pw(a). This index is called as enhanced correlation coefficient (ECC). We

estimated the optimal affine transformation matrix that maximizes ECC using a gradient-based approach (Evangelidis and Psarakis,

2008; Psarakis and Evangelidis, 2005).

To further improve the robustness and accuracy of the gradient-based algorithm, we processed both input images to normalize the

temporal dynamics of calcium signals. First, we obtained blurred images by performing 2D convolution using a circular kernel (32

pixel radius) as follows;

gðx; yÞr32 = ur32 � fðx; yÞ (Equation 6)
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where � denotes convolution operation, g(x, y) is the original image, ur32 is a circular kernel with 32 pixel radius, and g(x, y)r32 is the

blurred image. The pixel intensity near the edges of the blurred images are low due to zero-padding. To compensate for the zero-

padding effect, we normalized the blurred images as follows;

gðx; yÞ0r32 =
gðx; yÞr32
ur32 � JH;W (Equation 7)

where JH, W is an all-ones matrix where every element is equal to 1. Using the blurred images, we normalized the intensity of the orig-

inal image as follows;

fðx; yÞ0 =

PW
x = 1

PH
y = 1fðx; yÞ

H

H3W
3

fðx; yÞ
gðx; yÞ0r32

(Equation 8)

This intensity normalization enhances the contrast between dim neuronal structures and their local surrounding areas (radius of 32

pixels) oneach frame.This normalization suppresses thechanges inneuronal calcium-dependent fluorescence intensity across frames.

The time-invariance of the normalized images helps the gradient-based algorithm to match the target patch to the template patch.

After deriving the optimal affine transformation matrix for each image patch, we transformed each patch by subpixel bilinear inter-

polation such that the x-y coordinate is transformed following the optimal affine transformation. The transformed patches were

stitched together by averaging the intensity of overlapping pixels from adjacent patches to obtain the transformed full-FOV image.

Registration between different imaging sessions
We developed a robust automated approach to register images between different imaging sessions for longitudinal neural activity

analyses. The inputs to the algorithm are summary images from each imaging session. It accepts any summary images such as

the mean image (intensity is averaged across frames for each pixel), the max-projection image (max-projection of intensity from

all frames for each pixel), the standard deviation image (standard deviation of intensity across frames for each pixel), and the corre-

lation image (average correlation across frames between each pixel and its neighbors). Here, we use mean and max-projection im-

ages as the example inputs.We denote themean andmax-projection images of session G and session H as f(x, y)mean, G, f(x, y)mean, H,

f(x, y)max, G, and f(x, y)max, H, respectively. First, we locally normalize the intensity of each summary image using [Equation 8] and obtain

f(x, y)0mean, G, f(x, y)
0
mean, H, f(x, y)

0
max, G, and f(x, y)0max, H. Our goal is to obtain the optimal transformation matrices for the session H

summary images such that transformed summary images of session H match the summary images of session G. We obtain the

optimal transformation for the session H with a 2-step process.

The first step finds the optimal Euclidean transformation that maximizes ECC between the session G summary images and the

transformed session H summary images. Thewhole FOVs are usedwithout splitting them into patches in this first step. The Euclidean

transformation matrix for a 2D image is given by the following 3 3 3 matrix with 3 parameters;

E =

0
@

cosðqÞ � sinðqÞ e1

sinðqÞ cosðqÞ e2

0 0 1

1
A (Equation 9)

The Euclidean transformation matrix is a special case of an affine transformation matrix, and the transformation is limited to trans-

lation (e1 for x-shift, e2 for y-shift) and rotation (q). The reduced number of parameters (6 parameters in A, 3 parameters in E) makes

the estimation of the best translational and rotational shifts more robust than when the affine transformation matrix with full 6 param-

eters are used.

To ensure the robust estimation of E even in the presence of a large displacement between the 2 imaging sessions, we took the

pyramid-based approach. First, intensity-normalized images f(x, y)0mean, G and f(x, y)0mean, H were downscaled to the level 3 pyramid

representation (1/8 downscaling factor). A gradient-based algorithm finds the best E that maximizes ECC [Equation 5] between the

session G image f(x, y)0mean, G and the transformed session H image E(f(x, y)0mean, G) using the level 3 pyramid representations. Then,

the algorithmmoves to the level 2 pyramid representation (1/4 downscaling factor) and usesE from the level 3 as the initial estimate to

obtain the bestE at the level 2. It repeats the same procedure at the level 1 pyramid representation (1/2 downscaling factor) and lastly

at the level 0 (original image resolution). We performed the pyramid-based approach for both the mean and max-projection image

pairs to obtain the optimal Euclidean transformation matrices Emean and Emax. We then select the Euclidean transformation matrix

that gives the largest ECC as follows;

Ebest = argmax
E

�
rG; EkðHÞ

�
(Equation 10)

where Ek is either Emean or Emax, and rG; EkðHÞ denotes ECC between the summary image from the session G and the

transformed summary image from the session H. We used Ebest to transform f(x, y)0mean, H and f(x, y)0max, H to Ebestf((x, y)
0
mean, H)

and Ebestf((x, y)
0
max, H), respectively, by subpixel bilinear interpolation.

The above Euclidean transformation registers the 2 imaging sessions using translational and rotational shifts. However, these rigid

shifts are not sufficient for optimal registration due to slight differences in focal planes (e.g. rotation angle of the objective lens,
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z-depth of the focal plane) and deformation of the imaged brain tissue between the 2 imaging sessions. Therefore, the next second

step aims at solving this non-rigid registration problem using the method we described in the previous section (‘‘Registration algo-

rithm for slow distortion correction’’). We split f(x, y)0mean, G and Ebestf((x, y)
0
mean, H) into M 3 M square patches and find the optimal

affine transformation for each patch. We use affine transformation matrices with full 6 parameters [Equation 1] to allow not only trans-

lation and rotation but also scaling and shearing for the registration.We do not need to implement pyramidmethod in this second step

because the first Euclidean transformation already corrected large displacements.

We estimated the optimal affine transformations for all patches of both the mean and max-projection image pairs. We denote the

optimal affine transformationmatrices for ith patch byAi, mean andAi, max. We then select the affine transformationmatrix that gives the

largest ECC for each patch as follows;

Ai;best = argmax
Ai

�
rGi ;Ai;kfEbestðHiÞg

�
(Equation 11)

where Gi is the ith patch from session G, Hi is the ith patch from session H, Ai, k is either Ai, mean or Ai, max, and rGi ;Ai;kfEbestðHiÞg denotes
ECC between the ith patch from the session G and the transformed ith patch from the session H.We can use Ebest andAi, best to trans-

form ith patches fðx; yÞ0mean; Hi
and fðx; yÞ0max; Hi

to Ai;bestfEbestðfðx; yÞ0mean; Hi
Þg and Ai;bestfEbestðfðx; yÞ0max; Hi

Þg, respectively, by sub-
pixel bilinear interpolation. We repeat these steps for all patches, so the number of affine transformation matrices that we obtain is

M3M. In total, we obtain (M3M + 1) transformation matrices (including both Ebest and Ai, best) for a pair of imaging sessions which

we want to register. Using these transformation matrices, we can transform individual imaging frames or other summary images (e.g.

mean image, max-projection image, correlation image, standard deviation image, ROI mask image) from session H to session G co-

ordinate for longitudinal neural activity analyses.

Although changes of neural activity across sessions are largely removed by the local intensity normalization [Equation 8], some

neurons can be completely invisible on some imaging sessions for unknown reasons that may include inactivity, FOV mismatch,

and cell death. PatchWarp was robust as long as each patch contains some shared landmarks between the template and the target

images, but the algorithm can fail if there are few shared landmarks between images. In such rare cases, PatchWarp simply keeps the

patch as is after the rigid registration step.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis and quantification
PatchWarp softwarewaswritten inMATLAB.We usedMATLAB and Python3.7 for data analyses and visualizations.Matplotlib (Hunt-

er, 2007) and seaborn (Waskom, 2021) were used to create figure plots. All bar plots represent the means of the distributions, and all

error bars are 95% confidence intervals (CI). The original codes for pyramid-based hill climbing algorithm (Mitani and Komiyama,

2018) and gradient-based ECC maximization algorithm (Evangelidis and Psarakis, 2008) are available at https://github.com/

amitani/matlab_motion_correct and https://www.mathworks.com/matlabcentral/fileexchange/27253, respectively.
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