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SUMMARY
Task-related information is widely distributed across the brain with different coding properties, such as
persistency. We found in mice that coding persistency of action history and value was variable across areas,
learning phases, and task context, with the highest persistency in the retrosplenial cortex of expert mice per-
forming value-based decisions where history needs to be maintained across trials. Persistent coding also
emerged in artificial networks trained to perform mouse-like reinforcement learning. Persistency allows
temporally untangled value representations in neuronal manifolds where population activity exhibits cyclic
trajectories that transition along the value axis after action outcomes, collectively forming cylindrical dy-
namics. Simulations indicated that untangled persistency facilitates robust value retrieval by downstream
networks. Even leakage of persistently maintained value through non-specific connectivity could contribute
to the brain-wide distributed value coding with different levels of persistency. These results reveal that
context-dependent, untangled persistency facilitates reliable signal coding and its distribution across
the brain.
INTRODUCTION

The parallel distributed processing (PDP) theory (McClelland

et al., 1986; Rogers and McClelland, 2014; Rumelhart et al.,

1986) highlights computational advantages of distributed infor-

mation coding in neural networks and has had a profound impact

on our understanding of cognition and deep learning. Growing

evidence revealed that information coding in the brain is highly

distributed across neurons and distinct brain areas (Allen et al.,

2019; Hattori et al., 2019; Koay et al., 2020; Musall et al., 2019;

Steinmetz et al., 2019; Stringer et al., 2019). Even neurons in

the primary sensory cortex, which were classically thought to

process only sensory information of a single modality, have

been found to encode diverse information such as other sensory

modalities (Hattori and Hensch, 2017; Hattori et al., 2017; Iurilli

et al., 2012), spontaneous movements (Musall et al., 2019;

Stringer et al., 2019), actions (Hattori et al., 2019; Koay et al.,

2020; Steinmetz et al., 2019), reward (Hattori et al., 2019; Koay

et al., 2020), event history (Hattori et al., 2019; Koay et al.,

2020), and value (Hattori et al., 2019; Serences, 2008). Although

these signals are widely distributed, activity perturbations of a

brain area typically affect only a subset of behavioral outputs

that are associated with the information encoded in the area.

These results suggest that, although information coding is highly

distributed, not all of the information represented in neural activ-

ity may be used in each area.
A clue to understand the utility of encoded information may lie

in the temporal dynamics of the information coding. In working

memory tasks where information is maintained for several sec-

onds in a trial, information can be maintained as either persistent

neural activity or sequential transient activity across a neural

population that tiles the memory period (Cavanagh et al., 2018;

Fuster and Alexander, 1971; Masse et al., 2019; Miller et al.,

1996; Murray et al., 2017; Orhan and Ma, 2019; Romo et al.,

1999; Zhu et al., 2020). Recently, it was shown that certain brain

areas in mice, such as the retrosplenial cortex (RSC) (Hattori

et al., 2019) and the medial prefrontal cortex (Bari et al., 2019),

encode action values with exceptional persistency during his-

tory-dependent, value-based decision-making tasks where

values need to be stably maintained across trials. Inactivation

of either area impaired the ability to use the action value for their

decision making. These results suggest that persistent value

coding is critical for animals to exploit value for decision-making

when the value needs to be maintained for extended periods of

time. Similar persistent coding is prevalent across the brain and

species, ranging from coding of motor planning (Guo et al., 2017;

Inagaki et al., 2019; Li et al., 2016) and internal states (Allen et al.,

2019; Marques et al., 2020) to emotions (Jung et al., 2020; Ken-

nedy et al., 2020), yet the computational advantages of persis-

tent coding has not been fully established quantitatively.

Here we investigated the neural dynamics of action history and

value coding in six areas of the mouse cortex and artificial
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Figure 1. Persistency of action value coding across mouse cortex is area and learning dependent

(A) Schematic of the value-based decision task and an example expert behavior.

(B) Neural activity was recorded from 6 cortical areas. The heatmap is the trial-averaged z-scored deconvolved activity of an example RSC population. The

activity of each neuron was normalized to its peak. A half of the recorded trials were used to sort cells by the peak time, and the mean activity of the other half

are shown.

(C) Fractions of cells with significant DQ coding during ready period based on the mean activity within each of the non-overlapping 200 ms bins (Regression, p <

0.05, 2-sided t test). The fractions with filled circles are significantly above the chance fraction of 5% (p < 0.05, one-sided t test). DQ values were shuffled across

trials for the right panel.

(D) Activity of DQ coding neurons that were identified at different time windows (yellow shadings) for example RSC and S1 populations. Trials were binned

according to the DQ of each trial, and the activity in each trial bin was averaged.

(E) t-values forDQ coding at each time bin of ready period for example populations of RSC and S1 (Regression). Neurons were sorted based on the t-values at the

last time bin.

(F) DQ coding persistency of each population as quantified by the persistency index (0: chance persistency, 1: maximum-possible persistency, STAR Methods,

***p < 0.001, ****p < 0.0001, one-way ANOVA with Tukey’s HSD).

(G) Fraction of trials when mice chose the side with higher reward assignment probability across training sessions (n = 9 mice, mean ± CI). The first 6 sessions

were treated as early sessions.

(H) Activity of DQ coding RSC neurons that were identified from the activity within the specified time bin (yellow shadings) in early and late sessions (same RSC

population between the 2 sessions) indicating an increase in persistency during learning.

(I)DQcoding persistency of each population as quantified by the persistency index for early and expert sessions (**p < 0.01, ***p < 0.001,mixed effectsmodel with

population as the fixed intercept).

All error bars are SEM.
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recurrent neural network (RNN) agents to understand the

computational advantages of persistent coding and its impact

on distributed coding.

RESULTS

Learning and context dependence of coding persistency
across cortical areas
We first used the neural activity data recorded in mice perform-

ing decision-making based on history-dependent action value

we reported previously (Hattori et al., 2019). Each trial consisted

of a ready period, an answer period, and an intertrial interval (ITI).

The duration of each period was variable from trial to trial, mak-

ing the task more naturalistic than a fixed temporal sequence

(Figure 1A). During the ready period (LED cue), mice needed to

withhold licking to enter the answer period. This ensured that
2 Neuron 110, 1–14, February 2, 2022
the neural activity during the ready period was free of licking-

related motor activity. Mice were allowed to freely choose either

left or right lickport after a go cue tone. Different reward proba-

bilities were assigned to the 2 lickports, and the reward probabil-

ities changed every 60–80 trials without cue. Therefore, mice

were encouraged to dynamically estimate the underlying reward

probabilities of the 2 options on a trial-by-trial basis by forming

subjective action values based on their recent choice outcome

history using reinforcement learning (RL) (Sutton and Barto,

2018). The action values need to be stably maintained within

each trial and updated after each trial based on the action and

its outcome. Neural activity was collected with in vivo 2-photon

calcium imaging from transgenic mice that express GCaMP6s

(Chen et al., 2013) in excitatory neurons (Wekselblatt et al.,

2016) (Figure 1B), and the calcium signals were converted to

estimated spike rates by non-negative deconvolution (Friedrich
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Figure 2. Persistency of history coding is task dependent

(A) Schematic of the alternate choice task. The choice opposite to the choice in the previous trial was rewarded regardless of reward outcome in the previous trial.

(B) Fraction of trials of correctly choosing the side with reward across training sessions (n = 9 mice, mean ± 95% CI).

(C) Activity of RSC neurons that significantly encoded the action history from previous trial in alternate choice task and value-based decision task. These neurons

were identified using the activity within the specified time bin (yellow shadings). The activity of the identified action history coding neurons was separately

averaged according to the choice on the previous trial.

(D) Persistency of action history coding in each population as quantified by the persistency index for the alternate choice task (Alt) and the value-based decision

task (Value) (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, mixed effects model with population as the fixed intercept).
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et al., 2017; Pachitariu et al., 2018). The recording data were from

6 cortical areas including 2 association (RSC: retrosplenial; PPC:

posterior parietal), 2 premotor (pM2: posterior secondary motor;

ALM: anterior-lateral motor), and 2 primary sensory (S1: primary

somatosensory; V1: primary visual) cortex. We estimated the 2

action values on each trial (QL and QR) by fitting an RL model

to the choices of mice, and we focused our analyses on the neu-

ral coding of the policy value (DQ =QL�QR: the value difference

between the 2 actions) on which animals rely their decision-

making.

Regression analysis of the activity of individual neurons at

different time bins within the ready period identified significant

fractions of neurons that encode DQ in all 6 areas, with the high-

est fraction in the RSC (Figure 1C). DQ coding in these neurons

was independent of upcoming choice directions (Figure S1),

and reliably updated at single-trial resolution (Figure S2), indi-

cating that these neurons faithfully encoded DQ on a trial-by-trial

basis across all 6 areas. Despite the widespread DQ coding, the

temporal stability of DQ coding within the ready period differed

across areas. Only in the RSC, the DQ-coding neurons identified

at different time bins reliably encoded DQ throughout the trial

and across trials, while the encoding was temporally unstable

in the other 5 areas (Figures 1D and S1H). This was because

the way individual neurons encoded DQ across time differed

across areas (Figures 1E and S1I). We quantified the temporal

stability ofDQ coding by defining the persistency index which re-

flects the coding persistency relative to the chance level (STAR

Methods). The analysis revealed RSC as the area with the high-

est DQ coding persistency (Figure 1F).

We next examined whether the coding persistency is a fixed

property of individual areas or changes with learning. We

analyzed the population activity from RSC, PPC, pM2 and ALM

during early stages of training (< 1 week from training start, Fig-

ure 1G). We compared their value coding persistency between

early and expert sessions. We found that the DQ coding persis-

tency significantly increases in RSC, PPC and pM2 during
training (Figures 1H and 1I), indicating that coding persistency

can change during task learning.

The coding persistency may have increased during learning

because the value-based decision task requires stable value

maintenance for an extended period of time across trials. There-

fore, we tested whether coding persistency differs in another

task that does not require long maintenance of value. We trained

9 mice in the alternate choice task in which a reward was given

when mice made a choice that was the opposite to the previous

action (Figure 2A). Thus, the correct action depended only on the

immediately preceding trial, in contrast to the value task in which

history from multiple past trials was informative. All other task

conditions were identical between the 2 tasks. camk2-tTA::

tetO-GCaMP6s transgenic mice were trained in the alternate

choice task for at least 2 weeks to achieve a plateau-level perfor-

mance (�80% correct) (Figure 2B). We then performed 2-photon

calcium imaging of 8,524 RSC cells, 3,186 PPC cells, 7,915 pM2

cells and 4,911 ALM cells (RSC: 14 populations, 608.9 ± 18.1

cells, PPC: 7 populations, 455.1 ± 25.1 cells, pM2: 14 popula-

tions, 565.4 ± 34.6 cells, ALM: 10 populations, 491.1 ± 36.8 cells,

mean ± s.e.m per population). The coding persistency of action

history in the alternate choice task was significantly weaker than

in value-based task for the 4 imaged areas (Figures 2C and 2D).

These results indicate that the coding persistency in the cortex is

context dependent.

Persistent value coding in RSC forms cylindrical
dynamics
In the value-based task, DQ coding in RSC is temporally stable

within each trial. However, this does not necessarily mean that

RSC population activity is static during these periods. In fact,

individual neurons in RSC showed heterogeneous and rather dy-

namic activity patterns (Figure 1B). To investigate how the cod-

ing of different information temporally interacts, we sought to

decompose population activity into the demixed neural sub-

spaces where different task-related signals are separated into
Neuron 110, 1–14, February 2, 2022 3
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Figure 3. dsPCA reveals cylindrical dynamics with untangled value representation in RSC

(A) dsPCA decomposes the activity of a population of individual neurons that exhibit mixed selectivity for multiple variables into demixed dimensions and the

remaining subspace that is free of the targeted signals.

(B) Matrix operations to identify the target-free axes. Full QR decomposition of a matrix with target axes ðTÞ identifies a set of basis vectors that spans the target-

free subspace ðSfreeÞ. These target-free axes are realigned based on the principal component vectors (Wpca
p , matrix with top p PCA loadings) of the activity in the

target-free subspace. The target-free axes in the original n-dimensional space are the columns of Wdspca
p = SfreeW

pca
p .

(C) Fraction of activity variance along each target axis and the top 5 PC axes from the target-free subspace. dsPCA was performed on noisy simulated data with

target signals A, B, and C (10 repeated simulations). The amount of variance is similar between the 5 target-free axes because only Gaussian noise remained in the

target-free subspace.

(D) Signals A, B, and C along each dimension identified with dsPCA for the simulated data. Pearson correlations between the projected activity and each signal

are shown.

(E) Decoding accuracy of target signals from original population activity, activity in the target subspace (3 dimensions), and activity in the target-free subspace

(n-3 dimensions). 50,000 and 10,000 trials for training and test sets.

(F) We applied dsPCA to decompose the original population activity into the demixed Q subspace that consists of DQ, Qch, and SQ dimensions, and the Q-free

subspace which is orthogonal to the Q subspace.

(G) Fraction of activity variance along each Q-related axis and the top 5 PC axes from the Q-free subspace for RSC populations. Unlike simulated data (C), the

amount of variance between axes of the Q-free subspace differ, indicating that non-targeted correlated signals exist in the Q-free subspace.

(H) Q-related signals along each dsPCA dimension for RSC populations. Pearson correlations between the projected activity and each signal are shown.

(I) Decoding accuracy of Q signals from the original RSC population activity, activity in the Q subspace (3 dimensions), and activity in the target-free subspace.

(legend continued on next page)

ll
Article

4 Neuron 110, 1–14, February 2, 2022

Please cite this article in press as: Hattori and Komiyama, Context-dependent persistency as a coding mechanism for robust and widely distributed
value coding, Neuron (2021), https://doi.org/10.1016/j.neuron.2021.11.001



ll
Article

Please cite this article in press as: Hattori and Komiyama, Context-dependent persistency as a coding mechanism for robust and widely distributed
value coding, Neuron (2021), https://doi.org/10.1016/j.neuron.2021.11.001
distinct dimensions. Specifically, we sought to define 3 demixed

axes each encoding DQ, Qch (value of selected action [e.g., QL

on left choice trial]), or SQ (sum of 2 values), and the remaining

Q-free subspace that retains all the activity variance that is not

explained by the 3 Q-related axes. A previous study reported

demixed principal component analysis (dPCA) (Kobak et al.,

2016) as a method to decompose population activity into dem-

ixed target-dependent and independent dimensions. However,

dPCA is only designed to identify dimensions for discrete vari-

ables and cannot be applied for continuous variables such as

Q-related signals. In addition, dPCA splits each targeted signal

into multiple linear axes, which makes the signal interpretation

difficult. To overcome these limitations, we developed a novel

dimensionality reduction method that is more generally appli-

cable, which we term demixed subspace principal component

analysis (dsPCA) (Figure 3A). dsPCA identifies demixed dimen-

sions for targeted signals and dimensions for target-indepen-

dent activity, similarly to dPCA. However, unlike dPCA, it groups

each of the target signals along a single linear coding dimension

and can identify such dimensions for both discrete and contin-

uous target variables. The first step of dsPCA identifies the

best demixed linear axes for the target variables using a regres-

sion-based approach, similarly to (Mante et al., 2013). This step

involves fitting a multiple linear regression model of the form

xðtrialÞ= bAAðtrialÞ+ bBBðtrialÞ+ bCCðtrialÞ+ b0 to the activity of

individual neurons for the targeted variables, A, B, and C. The

regression coefficients, bA, bB, and bC are the partial derivatives

of the neural activity by each target variable, and the vectors that

consist of the coefficients from all neurons are the linearly dem-

ixed coding directions of the neural population for the 3 targeted

variables. We defined the targeted coding axes as the unit vec-

tors of these coding directions. By definition, these demixed

coding vectors capture all linear information of targeted variables

in a population. Next, dsPCA identifies the remaining target-free

subspace that is orthogonal to these targeted axes and captures

all the remaining activity variance. The target-free orthogonal

subspace is identified by performing full QR decomposition of

the matrix with the coding axis vectors. Then the axes of the

target-free subspace are further realigned based on the principal

components of the activity within the target-free subspace to

define axes that contain large fractions of remaining variance.

(Figure 3B). Therefore, dsPCA can be viewed as a general exten-

sion of PCA by combining the regression-based supervised

target axis identifications and the PCA-based unsupervised

dimensionality reduction of the target-free population dynamics.

We evaluated the demixing performance of dsPCA using noisy

simulated neural populations (200 neurons/population with

Gaussian noise) where graded signals A, B, andC are linearly en-
(J–K) Example RSC, S1, and V1 population activity dynamics in neuronal manifold

within-trial temporal activity variance of Q-free subspace (K). dsPCAwas applied

from choice was projected onto the identified axes. Circles indicate the choic

200 ms bins.

(L) Activity state transitions along DQ axis according to the updated action valu

tangling in the geometry. Post-action selection trajectory was separately averag

(M) Activity state transitions in (L) shown along the DQ axis.

(N) Population activity in RSC forms cylindrical dynamics where within-trial cyclic

in the other areas DQ representation is tangled.

All error bars are 95% CI.
coded in 20% of the neurons. Each target signal was uniquely

encoded only along the single target axis (Figures 3C and 3D),

and linear decoders failed to decode any A, B, or C signals in

the remaining target-free subspace (Figure 3E). We next applied

dsPCA on the cortical population activity time-averaged over the

ready period to identify demixed coding axes for DQ, Qch, and

SQ, and the remaining, Q-free subspace (Figure 3F). For all 6

areas, most of the targeted information was confined to each

of the coding axes, and the remaining subspace completely

lacked any of the targeted information even though this sub-

space contained the highest activity variance (Figures 3G, 3H,

3I, and S3). Although we detected some Qch signal along the

SQ axis (Figures 3H and S3B), this is expected because Qch is

a component of SQ (SQ = Qch + unchosen Q). However, note

that SQ signal is not detectable along the Qch axis, indicating

that the demixing of activity variance worked correctly. Thus,

dsPCA successfully identified demixed coding axes for

Q-related variables and the remaining Q-free subspace.

With dsPCA, we examined how DQ coding temporally inter-

acts with other dynamics. The activity dynamics around the

choices (between ± 4 s from the choice) was visualized in the

neuronal manifold consisting of theDQ coding axis and the other

value-related axes (Figure 3J), or the manifold consisting of the

DQ coding axis and the 2 largest temporal activity variance

axes within the Q-free subspace (Figures 3K). We found in

both manifolds that activity trajectories in RSC from trials with

different DQ values do not cross with each other across time.

In the manifold with the largest temporal dynamics (Figures 3K,

S4 and S5), the RSC population remained in the initial positions

linearly segregated along DQ axis according to DQ of the trial

(‘Pre-choice’ in the figures). Around the go cue time, the RSC

population diverged from these initial positions and drew rota-

tional dynamics. After a choice, the population returned toward

the initial positions following a circular geometry. The return ge-

ometry was warped along the DQ axis, reflecting the reward pre-

diction error (RPE) on each trial depending on the choice and its

outcome, which updates theDQ representation in the population

(Figures 3L and 3M). The RPE-dependent, bidirectional transi-

tion of the activity state ensures that the neural population

closely represents and updates the DQ coding online in each

trial. In contrast, the dynamics in S1 and V1 were highly tangled

over time, and similar DQ values could accompany different ac-

tivity states at different times. Therefore, although DQ coding is

widely distributed across the cortex, the different levels of

persistency confer different levels of tangling in DQ coding (Fig-

ure 3N). The exceptionally high DQ coding persistency in RSC

allows a temporally untangled value representation with the

within-trial cyclic dynamics that transitions along the value axis
s where DQ axis is paired with Qch and SQ axes (J), or axes that reflect major

on the activity between�2 and�1 s from choice, and the activity between ± 4 s

e time. Projected activity was temporally downsampled to non-overlapping

es in RSC, whereas S1 and V1 activity draw complex trajectories that lead to

ed according to the sign of DQ update.

dynamics can transition along DQ axis across trials according to the RPE, while

Neuron 110, 1–14, February 2, 2022 5
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Figure 4. Untangled persistency emerges in the artificial RNNs trained to perform ‘‘mouse-like’’ RL

(A) Optimal RNN agent was trained by updating its synaptic weights to minimize the discrepancy in decisions (cross-entropy error) between the teacher (optimal

choice generator) and the student (RNN).

(B) Behaviors of the trained optimal RNN agent in an example session. The agent ran the task by itself using its recurrent activity dynamics to implement RL. The

left choice probability of the RNN agent was taken from its output neuron activity. Left (QL) and right (QR) action values were estimated by fitting a RLmodel to the

behaviors.

(C) Mouse-like RNN agent was trained by updating its synaptic weights to minimize the discrepancy in decisions (cross-entropy error) between the teacher

(expert mice) and the student (RNN).

(D) Behaviors of the trained mouse-like RNN agent in an example session.

(E) Frequency of rewarded trials (left) and choice predictability by a RLmodel optimized to describe expert mouse behaviors (right, 5-fold cross-validation). n = 82

sessions for mice, 500 sessions (5 trained networks, each ran 100 sessions of 500 trials/session) each for the optimal and mouse-like RNN agents.

(F) Decision dependence on history from past 10 trials, quantified by a regression model (STARMethods). RewC: rewarded choice, UnrC: unrewarded choice, C:

outcome-independent choice history. n = 82 sessions for mice, 5 sessions (5 trained networks, each ran 10,000 trials) each for the optimal and mouse-like RNN

agents. The regression weights were normalized by the model accuracy. Error bars are 95% CI.

(G) Activity of DQ coding neurons that were identified using the activity at the highlighted time bin (yellow shading, �1 time step before choice) in the recurrent

layer of a trained mouse-like RNN agent (left), and the t-values of DQ after choice for the activity in each time bin (right). Each trial had 10 time steps, and

0 corresponds to the choice time. t-values were sorted based on the last time step (+9). The t-values in RNNs are higher than in mice due to smaller amount of

activity noise. Error bars are SEM.
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to reflect value updates. These dynamics across trials collec-

tively form cylindrical dynamics during task performance.

Untangled, persistent value coding emerges in the RNN
trained with the mouse RL strategy
The persistent and untangled DQ coding in the RSC, together

with our previous observation that RSC inactivation impairs

value-based decision (Hattori et al., 2019), raises the possibility

that persistent value coding is advantageous in the task. We

investigated this possibility by training artificial RNN agents to

perform RL in the same task and subsequently examining the

DQ coding scheme in the trained network. The training of

RNNs was done without constraining the activity dynamics.

We reasoned that, if persistent coding is advantageous, trained

RNN agents may use persistent coding to perform the task.
6 Neuron 110, 1–14, February 2, 2022
First, we trained RNNs to perform RL optimally by teaching

them the ideal choices of each trial based on the reward assign-

ment rule. In this task, once a reward is assigned to a choice, the

reward remains assigned until the choice is selected. As a result,

the actual reward probability of a choice cumulatively increases

if the choice is not selected in the recent trials. Therefore, an

optimal choice would depend on the current reward assignment

probabilities, which are unknown to mice and RNN agents, and

past choice history. By using the optimal choices as the teacher,

we trained synaptic weights of RNNs such that the RNNs use

only history of choice and reward to make near-optimal deci-

sions (Figures 4A and 4B). The durations between decisions

were made variable, similarly to the task structure in mice. The

RNNs receive action outcome information only at the time step

after choice and need to maintain the information through
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recurrent connectivity across time steps and trials. These opti-

mally trained networks (‘‘optimal RNN agents’’) achieved higher

reward rate than expert mice (Figure 4E). Furthermore, the

choice patterns of optimal RNN agents diverged from the RL

model that has been optimized to describe the behavior of expert

mice (Figure 4E), indicating that the optimal RNN acquired a RL

strategy that is distinct from mice. Accordingly, a regression

analysis showed that the dependence of optimal RNN agents

on choice and reward history differed from that of expert mice

(Figure 4F).

To obtain a network model that better mimics themouse strat-

egy, we trained RNNs to imitate expert mouse behaviors using

behavioral cloning, a form of imitation learning (Osa et al.,

2018). We used 50,472 decision making trials of expert mice

as the teaching labels to train the synaptic weights of the RNN.

The goal of this training was for the RNN to make the same de-

cisions as expert mice with its recurrent activity dynamics based

on the same history of choice and outcome in the past trials (Fig-

ure 4C). The trained RNNs (‘‘mouse-like RNN agents’’) per-

formed RL using their recurrent activity (Figure 4D), and the

reward rate and the RLmodel accuracy were equivalent to those

of expert mice (Figure 4E). Furthermore, the mouse-like RNN

agents used history from previous trials for its decisions in a

similar way as expert mice (Figure 4F). Therefore, the RL strategy

of expert mice was successfully transferred to the synaptic

weights of the trained RNN agents, and the trained RNNs could

implement mouse-like RL using its recurrent activity dynamics

without updating synaptic weights from trial to trial.

We then examined how the mouse-like RNN agents encoded

DQ. We found that RSC-like persistent DQ coding emerged in

their recurrent activity (Figures 4G). This observation is signifi-

cant as the training procedure did not impose a priori constraints

on the coding scheme of the RNN. We also examined how the

population activity dynamics evolved during training. We had

RNN agents at 3 stages of training run the task (before training,

intermediate (after 1 epoch of training), and fully trained) and

analyzed their recurrent activity during the task performance.

dsPCA revealed that untrained networkswith randomconnectiv-

ity exhibit highly tangled DQ coding, while training gradually

shaped the networks to form stacked circular dynamics (Fig-

ure 5A). Unlike RSC that formed cylindrical dynamics (Figure 3K),

the diameter of rotational trajectory varied across different DQ

states in the trained networks, suggesting that additional biolog-

ical constraints that were not considered for RNN training may

have imposed a constant diameter in the mouse brain. In addi-

tion to the analysis of DQ estimates from an RL model fit to be-

haviors, we examined the coding persistency of the ground truth

DQ which is available as the activity of the action output neuron

in each RNN agent. We confirmed that the ground truth DQ was

also persistently encoded in both optimal and mouse-like RNN

agents (Figure S6).

Persistency facilitates reliable and robust value
retrieval by downstream neural networks
The emergence of DQ coding persistency in RNN agents sug-

gests that persistent coding is a preferred solution in the task.

Whatwould be the advantage of persistent coding?Onepossibil-

ity is that untangled persistency may allow a more reliable signal
retrieval by thedownstreamnetwork toguide theaction selection.

We tested this possibility by training artificial RNNs to retrieve the

DQ signal from different temporal patterns of simulated popula-

tion activity (Figure 6A). For this purpose, RNNs are biologically

relevant as they receive time-varying inputs sequentially, as

opposed to other decoder models (e.g., regression models).

We created artificial population activity encoding DQ in 4

different patterns: persistent, and 3 types of non-persistent cod-

ing (Figure 6B). In persistent coding, 20% of cells encode DQ as

rate coding persistently. The slope of the DQ tuning curve for

each neuron was taken from its distribution among RSC neurons

(Figure S7). For the first 2 types of nonpersistent coding, the

cellular identity of the persistent coding pattern was shuffled

independently at each time bin to alter the DQ persistency of

each neuron without altering the population-level DQ signal in

each time bin. Nonpersistent 1 allowed each neuron to encode

DQ in multiple time points, while nonpersistent 2 was con-

strained that each neuron encodes DQ in only one of the 5

time points. In the third nonpersistent coding scheme, binary sig-

nals (active or inactive) at each time bin were used to encode DQ

by activating distinct sequences of neurons across time for

different values of DQ. We prepared 10 different sequences for

10 bins of DQ values.

Using these activity patterns as inputs, we trained RNNs to

retrieve DQ. Various levels of noise were added to the input ac-

tivity to test a range of signal-to-noise ratio (SNR). The RNN

trained with the persistentDQcodeswas able to retrieveDQbet-

ter than those trained with nonpersistent codes, especially when

the input activity noise was high (Figure 6C-D). This indicates that

persistent coding facilitates reliable information retrieval by

downstream circuits. Furthermore, the RNNs that were trained

to retrieve DQ from persistent coding were more robust to

changes in the synaptic weights, loss of synapses, and cells

(Figure 6E).

To investigate the impact of persistency in the brain activity,

we next examined howDQcould be retrieved from the neural ac-

tivity with different levels of persistency recorded from the 6

cortical areas (Figure 6F). In addition to the original recorded ac-

tivity (‘Raw’), we artificially increased or decreased DQ coding

persistency by temporally sorting (‘Sorted’) or shuffling (‘Shuf-

fled’) the cell identity in each area. These persistency manipula-

tions simply changed the neuron ID of activity and thus did not

alter the total amount of DQ signal in each time bin. Using these

sets of neural activity as inputs, we trained RNNs to retrieve DQ.

There was a general trend that an increase in persistency (sorted

activity) improved retrieval accuracy, while a decrease in persis-

tency (shuffled activity) impaired retrieval accuracy (Figure 6G).

However, the effect size differed across different cortical areas.

We found that the increase in retrieval accuracy by sorting was

larger when the original persistency in the population was lower,

and the decrease in retrieval accuracy by shuffling was larger

when the original persistency was higher (Figures 6H and 6I).

These results further support the notion that coding persistency

is a critical determinant that enhances the accuracy of informa-

tion retrieval by the downstream network.

The results above indicate that persistent codes can be read

out by the downstream more effectively than nonpersistent co-

des when the artificial neural network is allowed to train its
Neuron 110, 1–14, February 2, 2022 7
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Figure 5. Cylindrical dynamics emerges in mouse-like RNN agents and mice during training
(A) Population activity dynamics of the recurrent layer of mouse-like RNN agents in neuronal manifolds where DQ axis is paired with axes that reflect major within-

trial temporal activity variance in Q-free subspace. Agents at each training stage ran the task for 10,000 trials. dsPCA was applied on the activity averaged

between �5 and �1 time steps from choice, and the population activity between ± 5 time steps from choice was projected onto the identified axes. 4 inde-

pendently trained mouse-like RNN agents are shown. Circles indicate the choice time.

(B) Population activity dynamics of example RSC, PPC, pM2, and ALM populations in early and expert sessions. The same population of neurons was longi-

tudinally compared for each area. dsPCA was applied on the activity averaged between �2 and �1 s from choice, and the population activity between ± 4 s is

visualized. Circles indicate the choice time.

ll
Article

Please cite this article in press as: Hattori and Komiyama, Context-dependent persistency as a coding mechanism for robust and widely distributed
value coding, Neuron (2021), https://doi.org/10.1016/j.neuron.2021.11.001
synaptic weights byminimizing the difference between its output

and the target (DQ) as supervised learning. However, in the real

brain, such an explicit supervised target label to guide the

shaping of network connectivity is rarely available. Another

approach to shape the connectivity to retrieve particular infor-

mation is unsupervised learning where errors are computed us-

ing information readily available to the local network such as the

input itself (Lillicrap et al., 2020). Therefore, we next considered

the possibility that coding persistency may also affect signal

retrieval processes that do not necessitate a supervised target

label for each information. It has been suggested that the brain

may implement unsupervised learning in a similar way to autoen-

coder networks in which the target is the input itself (Lillicrap

et al., 2020). Autoencoders extract the most dominant signals

from the input activity and represent them in the activity of a

small number of neurons in the coding layer. The networks shape
8 Neuron 110, 1–14, February 2, 2022
their connectivity by reconstructing the input activity from the

coding layer and minimizing the reconstruction error between

the input and the reconstructed activity. To examine what infor-

mation in the input population activity can be extracted in an un-

supervisedmanner by downstream recurrent networks, we used

a recurrent denoising autoencoder (RDAE) (Maas et al., 2012;

Vincent et al., 2010) that sequentially processes input activity

and extracts the latent representations embedded in the input

activity sequence, which are sufficient to reconstruct the original

population activity sequence with noise robustness (Figure 7B;

STARMethods). When the RDAEwas trained on RSC population

activity, DQ was extracted in the most dominant dimensions of

neural activity in the coding layer (Figure 7A). The DQ represen-

tation in the coding layer was independent of upcoming choice

directions, indicating that the dimensions reflect value and not

motor plans. Other task-related signals were not represented
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Figure 6. Persistency in value coding facilitates reliable and robust value retrieval by downstream neural networks

(A) RNN (40 recurrent units) was trained to retrieve DQ from the input population activity sequence with either persistent or non-persistent DQ coding.

(B) Artificial population activity with either persistent or non-persistent DQ coding in the 200-cell sequence. 3 types of non-persistent mode were considered (2

rate coding, 1 binary coding; STAR Methods). In the rate coding populations, the color indicates the Pearson correlation between the activity and DQ (20% of

neurons at each bin encode DQ). Example populations were visualized by either clustering DQ-coding neurons at each time bin (top) or sorting neurons based on

the correlation at the last time bin (bottom). In the binary coding population, DQ is encoded by a unique activity sequence across time for each bin of DQ values

(ten evenly spaced bins between ± 1). 20% of neurons at each time bin participate in each sequence. In the example, cells are sorted for either sequence 1 or 2.

Time bins that are active in both sequences are colored black.

(C) Mean DQ retrieval accuracy by the downstream RNNs from populations with different coding modes and varying SNR (10 simulations for each).

(D) TheDQ retrieval accuracy at the 5th time step with different SNR in the input activity. The purple dashed line indicates the median SNR ofDQ coding in imaged

RSC populations.

(E) Robustness of trained RNNs. Simulations were performed using artificial population activity with SNR of 1. Noise to synaptic weights was given by Gaussian

noise with the standard deviation relative to the standard deviation of the weight distribution of each connection type. Error bars in (D) and (E) are 95% CI.

(F) Artificial manipulations of DQ coding persistency illustrated in an example PPC population during ready period. Error bars are SEM.

(G) DQ retrieval accuracy before and after the persistency manipulations (subsampled 240 cells were used, **p < 0.01, ****p < 0.0001, one-way ANOVA with

Tukey’s HSD).

(H) Gain in retrieval accuracy by sorting correlates with the original DQ coding persistency.

(I) Loss in retrieval accuracy by shuffling correlates with the original DQ coding persistency.
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as the dominant signals in the coding layer (Figure S8). Similar re-

sults were observed in the activity dynamics of the mouse-like

RNN agent but not in S1. Systematic comparisons among 6

cortical areas revealed that extracted DQ in the coding layer

was especially high from RSC, and the amount of extracted

DQ showed a high correlation with the DQ coding persistency

in the input population activity (Figures 7B–7D). To directly test

the effect of persistency, we artificially manipulated the persis-

tency of DQ coding in RSC without changing the total amount

of DQ signals in the population. We found that artificial increases

in the persistency by sorting the cell identity improved the DQ

extraction, while artificial decreases in the persistency by shuf-

fling the cell identity worsened the DQ extraction (Figure 7E).

These results indicate that high persistency in the input activity

can allow DQ retrieval by the downstream network even without

supervised learning.
Taken together, these analyses indicate that the persistency of

value coding facilitates a robust and accurate readout of value by

downstream networks.

Signal leakage can contribute to distributed value
coding with varying levels of persistency
The results so far indicate computational advantages of persis-

tent coding. However, in the mouse brain, DQ coding was widely

distributed across the 6 cortical areas with different levels of

persistency (Figures 1C–1F). We asked whether anatomical con-

nectivity among cortical areas relates to the persistency levels of

value coding.We analyzed the connectivity among imaged areas

using the dataset from the Allen Mouse Brain Connectivity Atlas

(Oh et al., 2014). Focusing on the projections from each of the 3

areas with high DQ persistency (RSC, PPC, pM2), we quantified

their axon projection density in each of the other 5 imaged areas
Neuron 110, 1–14, February 2, 2022 9
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Figure 7. Persistency in value coding also facilitates unsupervised value retrieval by downstream neural networks

(A) Representation of input population activity in the coding layer of denoising recurrent autoencoder networks (RDAE). Each network was trained to extract major

signals from example populations of RSC, S1, or a trainedmouse-like RNN agent (5,000 trials). Population activity sequence during ready period was used as the

input. Each data point corresponds to a trial, with the colors indicating theDQof the trial. Trials were separated according to the choice directions in the upcoming

answer period in the bottom 2 rows. The dominant signals extracted in the activity of coding neurons (10 neurons) were visualized in 2 dimensions by multidi-

mensional scaling.

(B) RDAEs extract major signals of the input population activity into the activity of N neurons in the coding layer by unsupervised learning.

(C) Decoding accuracy ofDQ from the activity ofN neurons in the coding layer. A simple feedforward neural network (N neurons in the coding layer are connected

to a single output neuron with tanh activation function) was used to decode from the coding layer. Input populations were subsampled 240 cells.

(D) Decoding accuracy of DQ from the activity of neurons in the coding layer (N = 1 and 10) positively correlates with the DQ coding persistency of the input

population activity.

(E) Artificial manipulations of DQ coding persistency in the input RSC population bi-directionally alter the amount of extracted DQ signal in the coding layer.

All error bars are SEM.
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(Figure 8A). We found that RSC, PPC, and pM2 predominantly

project to each other, with smaller amounts of direct projections

to ALM, S1, and V1 (Figures 8B, 8C and S9). Thus, 3 areas with

persistent and strong DQ coding densely connect with each

other, while they send less direct projections to the other 3 areas

with weaker and less persistentDQ coding. Based on this obser-

vation, we hypothesized that the weak DQ persistency in ALM,

S1 and V1 could result from a signal leakage from the areas

that maintain DQ as persistent activity. To test this hypothesis,

we built RNNswithmultiple recurrent layers that receive RSC ac-

tivity through nonspecific synaptic connectivity and examined

how DQ coding changes along the downstream hierarchy of

layers (Figure 8D). We found that the fractions of neurons with

DQ coding gradually decreased as the signal leaked through

layers of recurrent connectivity (Figures 8E and 8F). Concur-

rently, DQ coding became increasingly less persistent (Fig-

ure 8G), and the temporal tangling of DQ coding in neuronal

manifolds gradually increased in the downstream (Figure 8H).

Furthermore, artificial manipulations of DQ coding persistency

in the input RSC activity revealed that persistency in DQ coding

can affect the robust distribution ofDQcoding with graded levels

of persistency across the downstream layers (Figures 8F and

8G). We obtained similar results using PPC and pM2 as the input

activity (Figure S10A–S10H), and the decreases in theDQcoding
10 Neuron 110, 1–14, February 2, 2022
neurons and the DQ coding persistency in the downstream

layers were more dramatic when the direct neural projections

from layer to layer were sparse (Figures S10I–S10K). These

results indicate that, even without specific connectivity to selec-

tively route particular information, persistently encoded informa-

tion can propagate thorough layers of nonspecific connectivity

to lead to a wide distribution of the information encoded with

lower levels of persistency in downstream areas.

DISCUSSION

Brain-wide distribution of task-related information has emerged

as a common principle in recent years. In many cases, such as

what we observed forDQcoding (Figure S1), task-related signals

are encoded by a heterogeneous population with some cells

increasing but others decreasing their activity. Such information

coding may not be identified with classical large-scale recording

techniques such as fMRI, EEG and ECoG that quantify popula-

tion average responses. Even though information coding is wide-

spread, the way by which information is encoded differs across

areas (Hattori et al., 2019). In the present study, the big data of >

100k mouse decisions and the activity from > 100k neurons in 2

behavioral tasks allowed us to investigate the potential origin of

the distributed information coding and the computational
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Figure 8. Non-specific signal leakage can contribute to widely distributed value coding with graded persistency

(A) Injection coordinates for anterograde tracing virus. RSC (red, n = 60 experiments), PPC (blue, n = 9), and pM2 (yellow, n = 33). Experimentswith left hemisphere

injections were mirrored horizontally. Experiments with bothWTmice and Cre-transgenic mice were included (See Figure S9 for WT only). White squares indicate

the imaging FOVs used for our neural activity analyses.

(B) Mean projection density of axons from each source area. Black dots indicate the injection coordinates.

(C) Connectivity matrix with the mean projection density from each source area to the 6 target areas that we used for our neural activity analyses (500 mm 3

500 mm white squares).

(D) RSC population activity sequences were processed through 5 recurrent layers with non-specific connectivity. Connection probability from layer to layer was

set to 20% (Other probabilities in Figure S10).

(E) Fractions of DQ coding neurons at each of the 200 ms time bins during ready period (Regression, p < 0.05, 2-sided t test). Error bars are SEM.

(F) Mean fractions of DQ coding neurons at each layer during ready period. Fractions of time bins within the ready period were averaged for each population.

Artificial manipulations of DQ coding persistency in RSC does not affect the fractions of DQ coding neurons in RSC, but affect the fractions in the downstream.

(G) DQ coding persistency at each layer. Persistency progressively decreases in the downstream. Artificial manipulations of DQ coding persistency affect the

persistency in the downstream. Error bars in (F) and (G) are 95% CI.

(H) Temporal dynamics of population activity states visualized with dsPCA applied at each layer. Cylindrical dynamics gradually collapses into highly tangled

dynamics in downstream layers.
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advantages of persistent coding using data-driven machine

learning approaches. Coding persistency was both learning

and context dependent, and the persistent coding emerged dur-

ing task learning in both mouse brain and artificial network

agents performing the same task. Persistency facilitates the un-

tangledmaintenance of information aswell as its reliable retrieval

by downstream circuits. The observation that persistency is

context dependent suggests that certain cortical areas such as

the RSC can adjust coding persistency depending on behavioral

demands. For example, persistency may be especially preferred

when the task context requires extended maintenance of the in-

formation, or the maintained information is graded as in the case
of value, so that information can be stably maintained and

robustly retrieved by downstream areas. Furthermore, we

showed that persistent coding in key areas such as the RSC

could also contribute to the wide distribution of DQ coding

across themouse brain even through nonspecific signal leakage.

The same principle may also apply to other task-related signals

in various task conditions, providing a possible explanation for

the widespread phenomenon of distributed coding across the

brain. In other words, a wide distribution of information is ex-

pected across the interconnected network of the brain, unless

specific connectivity restricts the propagation of particular infor-

mation. We note that nonspecific leakage is one of potential
Neuron 110, 1–14, February 2, 2022 11
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mechanisms for signal distribution and it remains to be shown

how much such a mechanism contributes to the phenomenon.

Furthermore, this mechanism is agnostic as to whether the prop-

agated information has a function in the downstream areas —

leaked information could contribute to various computations

performed in downstream areas.

We trained artificial RNNs to imitate the mouse behavioral

strategy using behavioral cloning and investigated the activity

dynamics that emerged in the RNNs that were trained without

activity constraints. Previous studies trained task-performing

artificial neural networks either by using the correct action labels

which are defined in each task structure (e.g., action A must be

taken after stimulus A) (Masse et al., 2019; Orhan and Ma,

2019) or by RL (Banino et al., 2018; Song et al., 2017; Tsuda

et al., 2020; Wang et al., 2018). Both approaches train the net-

works to learn the optimal strategy in the respective task, inde-

pendent of the actual behavioral strategy that animals learn in

the environment. In our value-based decision task, animals learn

to use behavioral history for decisions during training, but the RL

strategy that animals develop was suboptimal (Figures 4E and

4F). The origins of the sub-optimality likely include (1) limited

memory capacity, (2) low sample efficiency, (3) limited amount

of training trials, and (4) inductive bias inherent to each species.

Deep RL, an artificial network that learns to solve a task with RL,

does not always have these constraints, and thus it learns a near-

optimal strategy unlike animals. These artificial networks may

not reflect the mechanisms used by the brain. In another com-

mon approach, simpler mathematical models (e.g., regression,

classical RL models) directly fit to animal behaviors are useful

to understand the behavioral strategies. However, they do not

provide insights into potential neural activity dynamics that

may mediate the behaviors. To overcome these issues, we

trained artificial RNNs, using mice as the teachers, to acquire

the sub-optimal RL strategy that mice develop during training.

The big data of �50k decisions collected from expert mice al-

lowed us to successfully train RNNs to imitate mouse behavioral

strategy. This data-driven approach to train RNNs to implement

animal/human-like behaviors would be a useful approach to

obtain the neural networkmodels and analyze what kind of activ-

ity dynamics allows the animal strategy in a particular task. Simi-

larly to our approach, convolutional neural networks have been

trained in visual object recognition tasks. The training was

done to perform the task optimally, as opposed to our approach

using behavioral cloning. Nevertheless these networks have

been shown to develop some neural activity characteristics

that resemble the neural activity in the visual system of animals

(Kriegeskorte, 2015; Yamins and DiCarlo, 2016). These deep

learning approaches will be a powerful approach to understand

what kind of neural activity may mediate given behaviors.

In this study, we developed dsPCA, a novel dimensionality

reduction method which combines the strengths of supervised

and unsupervised algorithms. The supervised aspect allows us

to identify the best demixed linear coding dimensions for tar-

geted task-related variables, and the unsupervised aspect

allows us to identify nontargeted correlated signals in the re-

maining population activity. Therefore, dsPCA is a generally

applicable method to understand both the signals of interest

and other nontargeted correlational structures in high-dimen-
12 Neuron 110, 1–14, February 2, 2022
sional data. Using dsPCA, we found that both mouse brain and

artificial RNN agents develop cylindrical dynamics, which con-

sists of within-trial cyclic dynamics and its across-trial transition

along DQ axis. Similar within-trial dynamics have been well stud-

ied in monkey motor cortex during arm movement (Churchland

et al., 2012; Russo et al., 2018, 2020). The studies showed that

the population activity state draws untangled rotational dy-

namics during movements. They also showed that the activity

state draws a simple cyclic trajectory in the primary motor cor-

tex, while the supplementary motor area draws a helical trajec-

tory that unfolds along a single direction by reflecting the

‘context’ of the movement (Russo et al., 2020). The activity tra-

jectory that we observed had cylindrical geometry, and the activ-

ity state repeatedly transitioned along the DQ axis based on the

RPE. These spatially confined geometries ensure the untangled

representation of DQ, which contributes to a robust DQ repre-

sentation in the brain. dsPCA and other RNN-based approaches

in this studywould facilitate the geometric understanding of pop-

ulation dynamics in both biological and artificial networks.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
The experimental data in the value-based decision task were first reported in ref. (Hattori et al., 2019). The data in the alternate choice

task were newly collected for the current study. Both male and female mice were included in both datasets because we did not

observe obvious sex-dependent differences in their neural activity patterns. Mice were originally obtained from the Jackson Labo-

ratory (CaMKIIa-tTA: B6;CBA-Tg(Camk2a-tTA)1Mmay/J [JAX 003010]; tetO-GCaMP6s: B6;DBA-Tg(tetO-GCaMP6s)2Niell/J [JAX

024742]). All mice (6 weeks or older) were implanted with glass windows above their dorsal cortex for in vivo two-photon calcium

imaging. All mice were water-restricted at �1ml/day during training.

METHOD DETAILS

Surgery
Mice were continuously anesthetized with 1%–2% isoflurane during surgery after subcutaneous injection of dexamethasone (2mg/

kg). After exposing the dorsal skull and removing the connective tissue on the skull surface using a razor blade, we marked on the

skull with black ink at the coordinates of [AP from bregma, ML from bregma] = [+3.0 mm, 0 mm], [+2.0 mm, 0 mm], [+1.0 mm, 0 mm],

[0mm, 0mm], [-1.0mm, 0mm], [-2.0mm, 0mm], [-3.0mm, 0mm], [0mm, ± 1.0mm], [0mm, ± 2.0mm], [0mm, ± 3.0mm], [-2.0mm, ±

1.0 mm], [-2.0 mm, ± 2.0 mm], [-2.0 mm, ± 3.0 mm]. We then applied saline on the skull and waited for a few minutes until the skull

became transparent enough to visualize vasculature patterns on the brain surface. We took a photo of the vasculature patterns along

with marked coordinates and used it to find target cortical areas for two-photon microscopy. A large craniotomy was performed to

expose 6 cortical areas, and a hexagonal glass window was implanted on the brain. The glass window was secured on the edges of

the remaining skull using 3MVetbond (WPI), followed by cyanoacrylate glue and dental acrylic cement (Lang Dental). After implanting

the glass window, a custom-built metal head-bar was secured on the skull above the cerebellum using cyanoacrylate glue and dental

cement. Mice were subcutaneously injected with Buprenorphine (0.1 mg/kg) and Baytril (10 mg/kg) after surgery.

Behavior task and training
Micewere water-restricted at 1-2ml/day after aminimum of 5 days of recovery after surgery.We began animal training in pre-training

tasks after at least a week of water restriction. We used BControl (C Brody), a real-time system running on Linux communicating with

MATLAB, to control behavioral apparatus.We placed 2 lickports in front of head-fixedmice tomonitor their licking behaviors and give

water rewards. Licking behaviors were monitored by IR beams running in front of each water tube. We used an amber LED (5mm

diameter) as the ready cue and a speaker for auditory cues. Each trial begins with a ready period (2 or 2.5 s with the amber LED light),

followed by an answer period with an auditory go cue (10 kH tone). The 10 kHz tone was terminated when animals made a choice (the

first lick to a lickport) or when the answer period reached the maximum duration of 2 s. Mice received a 50 ms feedback tone (left: 5

kHz, right: 15 kHz) after a choice. �2.5 ml water was provided to mice on each rewarded trial from a lickport.

Before running in the alternate choice task or value-based decision task, mice were trained in 2 pre-training tasks. In the 1st pre-

training task, mice were rewarded for either choice during the answer period. We gradually increased the mean ITI from 1 s to 6 s

with ± 1 s jitter. Through training in this task (2-3 days), mice learn that they can obtain water rewards from the 2 lickports if they

lick during the answer period. In the 2nd pre-training task, reward location alternated every trial irrespective of their choice directions.

Furthermore, licking during ready period was punished by 500ms white noise alarm sound and trial abort with an extra 2 s ITI in addi-

tion to the regular 5-7 s ITI. Through training in this 2nd pre-training task (2-3 days), mice learned to lick from both lickports and with-

hold licking during the ready period.

Alternate choice task
In the alternate choice task, mice need to change their choice from a previous trial to get a water reward. For example, if a mouse

chose left on one trial, regardless of whether themouse received a reward or not, a water reward is available only from the right choice

on the next trial. Themouse will not get any rewards by repeating left choices for many trials because a reward will not be assigned to

the left until the mouse collects the assigned reward on the right side. Mice need to rely on which side they chose in the previous trial

to make the correct choice. ITI was 5-7 s, and the trials with licking during ready period were classified as alarm trials (500 ms white

noise alarm sound and extra 2 s ITI). Mice were trained for at least 2 weeks before starting 2-photon calcium imaging.

Value-based decision task
In the value-based decision task, a reward is probabilistically assigned to each choice. On each trial, a reward may be assigned to

each choice according to the reward assignment probabilities that are different between two choices. Once a rewardwas assigned to

a lickport, the reward remained assigned until it was chosen. As a result, the probability that a reward is assigned to a choice gradually

increases if the choice has not been selected in the recent past trials. The combinations of reward assignment probabilities were

either [60%, 10%] or [52.5%, 17.5%] in a trial, and reward assignment probabilities switched randomly every 60-80 trials in the order

of [Left, Right] = ., [60%, 10%], [10%, 60%], [52.5%, 17.5%], [17.5%, 52.5%], [60%, 10%], .. The probability switch was post-

poned if the fraction of choosing the lickport with higher reward assignment probability was below 50% in recent 60 trials until
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the fraction reached at least 50%. ITI was 5-7 s, and the trials with licking during ready period were classified as alarm trials (500 ms

white noise alarm sound and extra 2 s ITI). Trials in which mice licked during ready period (‘alarm trials’, 5.15%) and the trials in which

mice failed to lick during the answer period (‘miss trials’, 4.68%) were not rewarded. We did not include alarm andmiss trials in neural

activity analyses to ensure that the ready periodswe analyzedwere free of licking behaviors and thatmicewere engaged in the task in

the trials.

Two-photon calcium imaging
We used a two-photon microscope (B-SCOPE, Thorlabs) with a 16 3 objective (0.8 NA, Nikon) and 925 nm excitation wavelength

(Ti-Sapphire laser, Newport) for in vivo calcium imaging. Images were acquired using ScanImage (Vidrio Technologies) running on

MATLAB. All calcium imaging was performed using camk2-tTA::tetO-GCaMP6s double transgenic mice that express GCaMP6s

in camk2-positive excitatory neurons. Each field-of-view (FOV) (512 3 512 pixels covering 524 3 524 mm) was scanned at

�29 Hz. Areas within the FOV that were not consistently imaged across frames were discarded from analyses (Typically 10 pixels

from each edge of the FOV). We imaged and analyzed layer 2/3 neurons of 6 cortical areas in this study: retrosplenial (RSC,

0.4 mm lateral and 2 mm posterior to bregma), posterior parietal (PPC, 1.7 mm lateral and 2 mm posterior to bregma), posterior pre-

motor (pM2, 0.4 mm lateral and 0.5 mm anterior to bregma), anterior lateral motor (ALM, 1.7 mm lateral and 2.25 mm anterior to

bregma), primary somatosensory (S1, 1.8 mm lateral and 0.75 mm posterior to bregma), and primary visual (V1, 2.5 mm lateral

and 3.25 mm posterior to bregma) cortex. Images from these areas were collected from both hemispheres. We collected only 1 pop-

ulation from each hemisphere for each cortical area of a single mouse. We imaged both hemispheres in two different behavioral ses-

sions if the FOVs on both hemispheres were clear at the time of imaging.

Image processing
Images from 2-photon calcium imaging were processed using a custom-written pipeline (Hattori, 2021). The pipeline corrects motion

artifacts using pyramid registration (Mitani and Komiyama, 2018), and slow image distortions were further corrected by affine trans-

formations based on enhanced correlation coefficients between frames (Evangelidis and Psarakis, 2008). We used Suite2P (Pachi-

tariu et al., 2016) to define regions of interests (ROIs) corresponding to individual neurons and extract their GCaMP fluorescence. We

selected only cellular ROIs using a user-trained classifier in Suite2P and by manual inspections. At the step of signal extraction from

each cellular ROI, we excluded pixels that overlap with the other ROIs.

Neural activity
The neural activity data for the value-based decision task were first reported in ref. (Hattori et al., 2019).We also additionally collected

new neural activity data frommice running the alternate choice task. The activity was continuously recorded with in vivo two-photon

calcium imaging at �29 Hz from mice during the task performance. GCaMP fluorescence time series were deconvolved to obtain

signals that better reflect the kinetics of neural spiking activity using a non-negative deconvolution algorithm (Friedrich et al.,

2017; Pachitariu et al., 2018). The deconvolved signal of each neuron was z-score normalized using the activity time series during

the entire imaging session before performing all the activity analyses in this study.

For the alternate choice task, we collected and analyzed the activity of 8,524 RSC neurons (14 populations), 3,186 PPC neurons

(7 populations), 7,915 pM2 neurons (14 populations) and 4,911 ALM neurons (10 populations) from 9 expert mice while they were

running the alternate choice task. For the value-based decision task, we analyzed the activity of 9,254 RSC neurons (15 populations),

6,210 PPC neurons (13 populations), 7,232 pM2 neurons (13 populations) and 5,498 ALM neurons (10 populations) from early ses-

sions (%6th session), and 9,992 RSC neurons (populations), 7,703 PPC neurons (populations), 9,759 pM2 neurons (populations),

6,721 ALM neurons (populations), 7,576 S1 neurons (14 populations) and 2,767 V1 neurons (6 populations) from expert sessions

of the data used in ref. (Hattori et al., 2019).

Reinforcement learning model for mouse behaviors
The reinforcement learningmodel that we used to estimate the action values in each trial was taken from ref. (Hattori et al., 2019). This

model was optimized specifically for mouse behaviors and not necessarily ideal for describing the RL action policy of artificial neural

network agents (e.g., Optimal RNN agents). Action values of chosen ðQchÞ and unchosen ðQunchÞ options in each trial were updated as

follows:

Qchðt + 1Þ =
(
QchðtÞ+arew � ðRðtÞ �QchðtÞÞ if rewarded ðRðtÞ= 1Þ
QchðtÞ+aunr � ðRðtÞ �QchðtÞÞ if unrewarded ðRðtÞ= 0Þ [eq.1]

Qunchðt + 1Þ = ð1� dÞ �QunchðtÞ [eq.2]

where arew and aunr are the learning rates for rewarded and unrewarded trials respectively, d is the forgetting rate for the unchosen

option, and RðtÞ is reward outcome in trial t (1 for rewarded, 0 for unrewarded trials). The learning rates and the forgetting rate were

constrained between 0 and 1. In alarm and miss trials, values of both options were discounted by d. The probability of choosing left

ðPLÞ on trial t is estimated using left ðQLÞ and right ðQRÞ action values as follows:
Neuron 110, 1–14.e1–e11, February 2, 2022 e3
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PLðtÞ = 1

1+ e�bDQðb0 +QLðtÞ�QRðtÞÞ [eq.3]

where b0 is the value bias which is constant within each session, and bDQ reflects the behavioral sensitivity to DQ. The RL model was

fit to the behavioral choice patterns with maximum likelihood estimation.

DQ-coding neurons
DQ-coding neurons in the value-based decision task were identified with the following multiple linear regression model.

aiðtÞ = bCCðtÞ+ bDQDQðtÞ+ bQch
QchðtÞ+ bSQSQðtÞ+ b0 [eq.4]

where aiðtÞ is themean activity of ith neuron within each 200ms time bin on trial t (except for some analyses (Figures S1 and S2) where

the mean activity within the first 2 s of ready period was used instead), CðtÞ is the choice on trial t (1 if contralateral choice, �1 if ipsi-

lateral choice), DQðtÞ is the value difference between contralateral and ipsilateral options on trial t, QchðtÞ is the value of the chosen

option on trial t, and
P

QðtÞ is the sumof values of both options on trial t. The regression weights were estimated by the ordinary least-

squares method. DQ-coding neurons were identified with two-tailed t test for the bDQ regression weight (statistical threshold of either

p < 0.05 or p < 0.01 as indicated in the figure legend of each analysis). The t-value for bDQðtÞ is TbDQðtÞ =
bDQ

seðbDQÞ where seðbDQÞ is an es-

timate of the standard error of bDQ.

Action history coding neurons
Neurons that encode action history from an immediately preceding trial in the alternate choice task and the value-based decision task

were identified with the following multiple linear regression model.

aiðtÞ = bCt
CðtÞ+ bCðt�1ÞCðt� 1Þ+ b0 [eq.5]

where aiðtÞ is the mean activity of ith neuron within each 200 ms time bin on trial t, CðtÞ is the choice on trial t (1 if contralateral

choice, �1 if ipsilateral choice), Cðt�1Þ is the choice on trial ðt�1Þ (1 if contralateral choice, �1 if ipsilateral choice, 0 otherwise).

The regression weights were estimated by the ordinary least-squares method. Action history coding neurons were identified with

two-tailed t test for the bCðt�1Þ regression weight (statistical threshold of p < 0.05). The t-value for bCðt�1Þ is TbCðt�1Þ
=

bCðt�1Þ
seðbCðt�1ÞÞ

where

seðbCðt�1ÞÞ is an estimate of the standard error of bCðt�1Þ.

Persistency index
Persistency index to quantify the mean persistency of DQ coding or action history coding in a population of neurons was defined as

follow;

Persistency index =
1
m

Pm
j = 1

Pn
i = 1std Ti;j

shuffled sequence
� ��Pn

i = 1std Ti
raw sequence

� �
1
m

Pm
j =1

Pn
i = 1std Ti;j

shuffled sequence
� ��Pn

i = 1std Ti
sorted sequence

� � [eq.6]

where Ti
raw sequence is the time series of t-values for bDQ or bCðt�1Þ that was obtained by fitting the ½eq: 4� or ½eq: 5� to the activity of

each of the non-overlapping 200ms time bins between 5 s before the ready cue and 2 s after the ready cue. The across-time standard

deviation of the Ti
raw sequence was summed across all n neurons in the population (including neurons with non-significant t-values),

and this summed standard deviation was normalized by min-max normalization such that the persistency index ranges between

0 (chance level persistency of a target population) and 1 (maximum persistency of a target population). The maximum persistency

of a target population,
Pn
i = 1

stdðTi
sorted sequenceÞ, was obtained by independently sorting the cell identity at each time bin according

to the bDQ t-values of each cell in the time bin. The chance level persistency of a target population, 1
m

Pm
j = 1

Pn
i =1

std Ti;j
shuffled sequence

� �
,

was obtained by independently shuffling the cell identity at each time bin. To minimize the effect of randomness in the shuffling pro-

cedure, we iterated the shuffling m times ðm = 10Þ and took the mean of the 10 iterations. This persistency index describes how

persistent the target signal coding is above chance and how far the persistency is from themaximum persistency that the target pop-

ulation activity could achieve.

Demixed subspace principal component analysis (dsPCA)
Supervised dimensionality reduction algorithms can identify dimensions that encode targeted signals in high-dimensional data. How-

ever, they do not provide any information about signals that are not targeted by the users. As a result, these supervised analyses may

miss important signals that exist in the original high-dimensional data. On the other hand, unsupervised dimensionality reduction al-

gorithms can find dimensions for the major signals in the high-dimensional data, but they do not automatically reveal what kind of

signals are reflected along each dimension. Furthermore, unsupervised methods may miss the signals of interest if the target signals

are much weaker than the other dominant signals in the data.
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Wedeveloped a novel dimensionality reduction algorithm that combines the strengths of both supervisedand unsupervisedmethods.

The demixed subspace principal component analysis (dsPCA) identifies demixed coding axes for targeted variables in a supervised

manner, and then identify axes that capture the remaining variance in the data using an unsupervised method. Although previously re-

ported demixed principal component analysis (dPCA) has similar objectives (Kobak et al., 2016), dPCAcan only identify targeted coding

axes for discrete variables. In contrast, dsPCA can identify demixed axes for both discrete and continuous variables. Furthermore,

althoughdPCAsplitseach targetedsignal intomultiple linearaxes,dsPCA identifiesasingle linearcodingdimension for eachof the target

signals, and all the linear information for the target signals are contained within the dimensions identified by these single coding axes.

The input to the algorithm is a 3rd-order tensor of population activity with dimensions of Trial (m) 3 Time (t) 3 Neuron (n).

Xtrial3 time3neuron = Xm3 t3n [eq.7]

The tensor Xm3t3n is first averaged over time axis elements within a specified time range, and we get a 2nd-order tensor of X 0
m3n.

X 0
m3n =

0
BBBBBBB@

x1;1

x1;2

x2;1 / xn;1

x2;2 / xn;2

«

x1;m

« 1 «

x2;m / xn;m

1
CCCCCCCA

[eq.8]

To identify the demixed linear coding axes that encode DQ, Qch, or SQ in the population activity, we fit the following multiple linear

regression model to the mean activity of individual neurons during the ready period;0
BBBBBB@

xi;1

xi;2

«

xi;m

1
CCCCCCA =

0
BBBBBBB@

1 DQ1

1 DQ2

Qch1 SQ1

Qch2 SQ2

« «

1 DQm

« «

Qchm SQm

1
CCCCCCCA

0
BBBBBB@

bi; 0

bi; DQ

bi;Qch

bi; SQ

1
CCCCCCA+

0
BBBBB@

ε1

ε2

«

εm

1
CCCCCA [eq.9]

where bi; DQ, bi;Qch
, and bi; SQ are the regression coefficients of the ith neuron. For a population of n neurons, we obtain n regression

coefficients for each type of Q-related signal. These regression coefficients are used to define the coding axes as follows;

Dq
�!

=

0
BBBBBBB@

Dq1

Dq2

«

Dqn

1
CCCCCCCA

=
bDQ

��!
kbDQ

��!k 2

=

�
b1; DQ b2; DQ / bn; DQ

�TffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i =1

��bi; DQ

��2q [eq.10]

qch
�!

=

0
BBBBBBB@

qch1

qch2

«

qchn

1
CCCCCCCA

=
bQch

��!
kbQch

��!k
2

=

�
b1; Qch

b2; Qch
/ bn; Qch

�TffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i =1

��bi; Qch

��2q [eq.11]

Sq
�!

=

0
BBBBBBB@

Sq1

Sq2

«

Sqn

1
CCCCCCCA

=
bSQ

��!
kbSQ

��!k 2

=

�
b1; SQ b2; SQ / bn; SQ

�TffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1

��bi;SQ

��2q [eq.12]

Note that these coding axes are ‘demixed’ coding axes where the activity variance for partially correlated variables are demixed into

one of the axes for the partially correlated variables thanks to the linear demixing in the regression model ð½eq: 9�Þ. Although some

previous studies further orthogonalized these demixed coding axes (Mante et al., 2013), we did not orthogonalize between the coding

axes because further orthogonalization would remix these best demixed coding axes.
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Next, our goal is to identify a neural subspace that does not encode any of the targeted Q-related signals. To identify the neural

subspace that is free of the 3 targeted Q-related signals, we solve the following full QR decomposition of an n 3 3 matrix with the

3 coding axis vectors using Householder reflections;0
BBBBBBBBB@
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[eq.13]

whereR is an upper triangularmatrix,SQ is a neural subspace that captures all Q-related signals, andSfree is theQ-free subspace that

is orthogonal to the SQ. SQ is formed by 3 orthonormal basis vectors ð q1
�!

; q2
�!

; q3
�!Þ, and these basis vectors and the 3 coding axis

vectors ðDq�! ; qch
�!

; Sq
�!Þ span the identical neural subspace. On the other hand, Sfree is formed by (n – 3) target-free orthonormal vec-

tors ðf1! ; f2
!
; / fðn�3Þ

���!Þ and capture all the remaining population activity variance that were not captured by the subspace SQ. The

representation of the population activity X 0
m3n in Sfree is given by

projSfree
X 0 = X 0Sfree [eq.14]

Lastly, we further realign the dimensions of the Q-free subspace Sfree such that minimum numbers of dimensions are necessary to

explain the remained activity variance asmuch as possible. This realignment is done using the principal component vectors fromPCA

on projSfree
X 0. The top p principal component vectors (p % n - 3) can be used as the major Q-free subspace dimensions for dimen-

sionality reduction purpose as follows;

Fp
0 = X 0ðSfreeWp

pcaÞ=X 0Wp
dspca [eq 15]

where them-by-pmatrix Fp
0 is the top p principal components of the activity within the Q-free subspace, the (n-3)-by-pmatrixWp

pca

is the loadings matrix of the PCA, and the n-by-pmatrixWp
dspca is the loadings matrix of the dsPCA. The columns ofWp

dspca are the

Q-free axis vectors in the raw n-dimensional population activity space. More generally, the neural subspace that is free of k targeted

variables can be obtained by the same [eq 15] with p % n – k.

Through these steps ([eq 7]�[eq 15]), dsPCA identified the 3 linearly demixed coding axes for the targeted Q-related signals ðDq�! ;

qch
�!

; Sq
�!Þ, and (n - 3) target-free axes (column vectors ofWn�3

dspca). We confirmed that none of the targeted signals could be linearly

decodable from the population activity within the obtained target-free subspace (Figures 3E, 3I, and S3C).

In this manuscript, we decomposed neural population activity into demixed Q subspace and Q-free subspace using dsPCA. The Q

subspace consists of demixed linear coding axes for DQ, Qch and SQ, and all activity variance that linearly relates to these Q-related

signals are included in this subspace. On the other hand, all the other activity variance that did not remain in the Q subspace is

included in the Q-free subspace. The activity state of the neural population changes across trials within the Q subspace depending

on how each of the Q-related signals is updated by choice and its outcome. We also identified the axes that capture themajor within-

trial temporal activity variance in the Q-free subspace by performing PCA on the 2nd-order tensors that are obtained by averaging

projSfree
X over trial axis elements.

Quantification of Q-related signals in subspaces from dsPCA
dsPCA decomposed population activity into Q subspace and Q-free subspaces. We examined the amount of Q-related signals in

each subspace. The strength of Q-related signals in a full population activity with n neurons was quantified using linear decoders

given by
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DQðtÞ =
Xn
i = 1

bDQ
i aiðtÞ+ bDQ

0 [eq.16]

QchðtÞ =
Xn
i = 1

b
Qch
i aiðtÞ+ b

Qch
0 [eq.17]

SQðtÞ =
Xn
i = 1

bSQ
i aiðtÞ+ bSQ

0 [eq.18]

where aiðtÞ is the activity of the ith neuron on trial t, bxi is the regression weight for aiðtÞ, and bx0 is the constant term. The decoder was

trained with an L2 penalty by selecting the regularization parameter by 5-fold cross-validation. The decoding accuracy was obtained

with 5-fold cross-validation by separating trials into training and test sets. Similarly, the strength of Q-related signals in the 3-dimen-

sional Q subspace and the (n - 3)-dimensional Q-free subspaces were quantified using linear decoders on the projected population

activity in each subspace as follows;

DQðtÞ =
Xx
i = 1

bDQ
i siðtÞ+ bDQ

0 [eq.19]

QchðtÞ =
Xx
i =1

b
Qch

i siðtÞ+ b
Qch

0 [eq.20]

SQðtÞ =
Xx
i = 1

bSQ
i siðtÞ+ bSQ

0 [eq.21]

where siðtÞ is the population activity along the ith dimension of the subspace on trial t, bxi is the regression weight for siðtÞ, and bx0 is the

constant term. x = 3 for Q subspace while x = n� 3 for Q-free subspace. These analyses revealed that all Q-related signals were

captured by the Q-subspace, while Q-related signals were completely absent in the Q-free subspace (Figures 3E and 3I and S3C).

RNN agents with optimal or mouse-like RL strategy
The RNN agents trained to perform RL in this study consisted of 2 neurons in the input layer, 100 neurons in the recurrent layer, and 1

neuron in the output layer. The agents were trained to perform RL in the same behavior task environment with 10 time steps per trial.

The 2 input neurons receive choice and reward outcome information only at the time step immediately after choice, and the history of

the choice outcome information wasmaintained through the recurrent connectivity in the downstream recurrent layer. The sequence

of activity fed into the input neurons was given as vectors with either choice or reward history labels in their elements. The elements

that correspond to the time steps immediately after choice took 1 for left choice and �1 for right choice in the choice history vector,

and the elements took 1 for reward outcome and �1 for no-reward outcome in the reward history vector. These elements took 0 in

miss trials. The other elements of the vectors were all zeros. We sequentially fed 100 time steps of sequences into these input neu-

rons, and the network training was done with unroll length of 100 time steps for backpropagation through time. The choice input

neuron and reward input neuron connect with neurons in the recurrent layer. The neurons in the recurrent layer are connected

with each other through recurrent connections, which allows each recurrent neuron to receive outputs of the previous time steps.

The output of the recurrent layer is given by

yðtÞ = tanh
�
WxxðtÞ + Wyyðt�1Þ + b

�
[eq.22]

where tanhð $Þ is a hyperbolic tangent activation function of the form tanhðzÞ = ez�e�z

ez + e�z, xðtÞ is a 23 1 vector containing the choice and

reward information from a previous time step, yðt�1Þ is a 1003 1 vector containing the layer’s outputs at time step t,Wx is a 1003 2

matrix containing the connection weights for the inputs of the current time step,Wy is a 1003 100 matrix containing the connection

weights for the outputs of the previous time step, and b is a 1003 1 vector containing each neuron’s bias term. The recurrent neurons

send their outputs to the output neuron. The output neuron calculates the probability of selecting left action in the trial with a sigmoid

activation function of the form sðzÞ= 1
1+ e�z . The agent then selects an action for the trial probabilistically by following the choice prob-

ability from the output neuron. This 3-layer RNN agent was trained to perform either an optimal RL strategy or the RL strategy that

mice develop after training using its recurrent activity dynamics.

To train the RNNs to perform optimal RL in the task environment, we directly utilized the reward assignment rule of the task. In the

value-based decision task, a reward is assigned to each choice according to the reward assignment probabilities of each choice on

each trial. Once a reward was assigned to a lickport, the reward was maintained on the choice until it was chosen by the animal. As a

result, the probability that a reward is assigned to a choice gradually increases if the choice has not been selected in the recent trials.

The actual cumulative reward probabilities of left and right choices are given by
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PLðtÞ = 1�
Yt

x = t�NRðtÞ
f1�ALðxÞg [eq.23]

PRðtÞ = 1�
Yt

x = t�NLðtÞ
f1�ARðxÞg [eq.24]

where AcðxÞ is the reward assignment probability of choice c on trial x,NcðtÞ is the number of successive c choices before trial t (e.g.,

NRðtÞ= 3when the choice on (t-4) was left and the choices on (t-3), (t-2), (t-1) were right). Therefore, an optimal choice generator would

select a choice with higher cumulative reward probability on each trial as follows;

Optimal choice = argmax
c

fPcðtÞg [eq.25]

We used this optimal choice generator as the teacher to train RNNs to learn a near-optimal RL strategy. Unlike the optimal choice

generator that knows the exact reward assignment probabilities ðAcðxÞÞ and the reward assignment rule, the RNNs are agnostic

to these hidden variables. Therefore, our goal is to train the RNNs to use only the past choice and reward history to make choices

that are similar to the choices made by the optimal choice generator. To train the RNNs to imitate the behaviors of the optimal choice

generator, we calculated binary cross-entropy as the loss function to be minimized. The cross-entropy is given by

Hp = � 1

M

XM
i = 1

�
aoptimal
i log

�
pRNN
i

�
+
�
1� aoptimal

i

�
log
�
1�pRNN

i

��
[eq.26]

whereM is the total number of training trials, aoptimal
i is 1 or 0 when the optimal choice generator selected left or right action on the ith

trial respectively, and pRNN
i is the left choice probability of the RNN agent from its output neuron.

To train RNNs to performmouse-like RL that is suboptimal in the task environment, we used 50,472 decisionmaking trials of expert

mice in the task environment. We fed the choice and reward history that expert mice experienced into the RNNs, and trained the

RNNs to imitate the choice patterns of expert mice. To do this, we calculated the binary cross-entropy as the loss function to bemini-

mized. The cross-entropy is given by

Hp = � 1

M

XM
i = 1

�
amouse
i log

�
pRNN
i

�
+
�
1� amouse

i

�
log
�
1�pRNN

i

��
[eq.27]

where M is the total number of training trials, amouse
i is 1 or 0 when the expert mouse selected the left or right action in the ith trial

respectively, and pRNN
i is the left choice probability of the RNN agent from its output neuron.

For the training of both the optimal RNN agents andmouse-like RNN agents, the cross-entropy loss was calculated at variable time

steps for each trial to reflect the temporal variability of the timing of decision making in this task (variable ITI, variable ready-period,

variable reaction time), and all the synaptic weights of the RNN agent were trained with backpropagation through time. The training

was optimized using mini-batch gradient descent with Nesterov momentum optimization (learning rate of 0.001 and momentum of

0.9, batch size of 128), and the training was terminated when the loss for a validation set (1/5 of trials) stopped decreasing for the

consecutive 50 epochs as a form of regularization (Early stopping). The trained RNN agents ran the task in a simulated environment

with the length of 500 trials/session, and the RL behavioral strategy in the simulated environment was quantified by a RL model opti-

mized to describe expert mouse behaviors ½eq: 1�3� and a logistic regression model ½eq: 28�.

Quantification of history-dependent behavioral strategy
The quantification of behavioral strategy for mice and RNN agents was performed with either a RL model ½eq: 1�3� or a logistic

regression model ½eq: 28�. The logistic regression model predicts an action in each trial based on 3 types of history from the past

10 trials. The model is given by

logitðPLðtÞÞ =
X10
i = 1

bRewCðt�iÞ � RewCðt� iÞ+
X10
i = 1

bUnrCðt�iÞ � UnrCðt� iÞ

+
X10
i = 1

bCðt�iÞ � Cðt� iÞ+ b0 [eq.28]

wherePLðtÞ is the probability of choosing left on trial t,RewCðt�iÞ is the rewarded choice history on trial t � i (1 if rewarded left choice,

�1 if rewarded right choice, 0 otherwise), UnrCðt�iÞ is the unrewarded choice history on trial t � i (1 if unrewarded left choice, �1 if

unrewarded right choice, 0 otherwise), Cðt�iÞ is the outcome-independent choice history on trial t � i (1 if left choice, �1 if right

choice, 0 otherwise). bRewCðt�iÞ, bUnrCðt�iÞ, and bCðt�iÞ are the raw regression weights of each history predictor, and b0 is the his-

tory-independent constant bias term. The sizes of these raw weights reflect the relative contribution of each history variable to de-

cision making in a behavior session. However, the weight size does not reflect the absolute strength of the contribution to decision
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making because the strength of each history effect on decision making is determined by not only the regression weight but also the

choice prediction accuracy of the regression model. Therefore, we normalized the regression weights by the choice predictability of

the regression model as follows;

Normalized bx =

 
Ncorrect

choice

Nall
choice

� 0:5

!
� bxP10

i = 1ðjbRewCðt�iÞj+ jbUnrCðt�iÞj+ jbCðt�iÞjÞ+ jb0j
[eq.29]

where Nall
choice is the number of choice trials in the session, and Ncorrect

choice is the number of choice trials that were correctly predicted by

the ½eq: 28�. Each regression weight is divided by the sum of absolute values of all the regression weights before being multiplied by

the choice prediction accuracy. This normalization turns raw regression weights to reflect the fraction of choice predictability by each

of the history variable. These normalized weights are comparable across different behavior sessions or mice because they reflect the

absolute strength of each history event on decision making. We used these normalized weights to compare the history dependence

of expert mice and trained RNN agents for their decision making.

Artificial population activity sequence
Artificial population activity sequences with either persistent or non-persistent rate coding of DQ were created based on the distri-

butions of the tuning curves of DQ coding among RSC neurons. Each population consisted of 200 neurons with 5 time bins, and we

assigned 20% of neurons at each time bin to encode DQ. The tuning curve slope of DQ coding of each RSC neuron ðbDQÞ was

measured by fitting ½eq: 4� to the activity during ready period. We defined across-trial standard deviation of bDQDQðtÞ from ½eq: 4�
as the signal standard deviation of DQ coding. To derive the noise standard deviation, we first subtracted bDQDQðtÞ from the ready

period activity sequence of each trial. The residual ready period activity sequences were then concatenated across trials. The stan-

dard deviation of the concatenated activity sequence was defined as the noise standard deviation. The SNR of DQ coding was

defined as the ratio of the signal standard deviation to the noise standard deviation. The tuning curve slope for each activity time

bin was randomly sampled without replacement from the distributions of DQ-coding neurons. The DQ signal was linearly encoded

at each time bin according to the sampled tuning curve slope, and additional Gaussian noise was added to the neural activity. The

other non-DQ coding activity time bins simply exhibited Gaussian noise. We created populations with 3 different types of rate coding

modes (Persistent, Non-persistent 1, Non-persistent 2). In the populations with Persistent mode, the identical 20% of neurons en-

coded DQ at all 5 time bins. In the populations with Non-persistent 1 mode, we randomly selected 20% of neurons at each time

bin as the DQ-coding neurons and allowed each neuron to encode DQ with different tuning curve slopes at different time bins.

Non-persistent 2 mode is similar to Non-persistent 1, except that each neuron in the population encoded DQ at only one of the

time bins.

In addition to the 3 rate coding schemes, we also considered a coding mode that encodes DQ as specific sequential activity pat-

terns across cells in a population. In this 3rd non-persistent coding mode (Non-persistent 3), neural activity at each time bin can take

only binary states (0: inactive, 1: active). Therefore, this population encodes DQ using only the identity of active cells. We encoded 10

different sequences in a population such that each sequence uniquely corresponds to one of the 10 binned DQ (�1 to 1 with binning

of 0.2 width). For each sequence, we randomly assigned 20% of neurons at each time bin as active neurons with a constraint that

each neuron can be active only at a single time step in a sequence. After encoding the 10 different sequences in a population, we

added Gaussian noise to the activity of each neuron. We defined the SNR of this coding scheme as the ratio of the across-time stan-

dard deviation of the activity of a neuron to the standard deviation of its added Gaussian noise.

DQ retrieval by RNN
RNNs were trained to retrieve DQ information from the input population activity sequence. The RNN had 40 recurrent neurons with

tanh activation functions and an output neuron with linear activation function. The network weights were updated by backpropaga-

tion through time with RMSprop to minimize mean-squared-error (MSE) between the network outputs and DQ values of the trials in a

training set. The network training was terminated when theMSE of a validation set stopped decreasing for the consecutive 20 epochs

as a form of regularization (Early stopping). For each training iteration, we used 20%of available trials as a test set to calculate theDQ

retrieval accuracy by the trained network, and the remaining 80% of the trials were further split into validation set (10%) and training

set (70%). We repeated the network training 5 times by using different sets of trials as the test set such that we can obtain DQ pre-

dictions by the trained networks for all available trials in a cross-validated way. The DQ retrieval accuracy was calculated by

comparing the DQ predictions to the true DQ from the RL model. For the DQ retrieval from cortical activity, we used only 240 cells

as the inputs to match the number of cells across different cortical areas. For each neural population, we subsampled 240 cells in

each iteration allowing repetitions with the smallest number of iterations to include every cell at least once for decoding, and the

DQ retrieval accuracy from the iterations were averaged.

Denoising recurrent autoencoder
Autoencoder is an artificial neural network that learns to extract efficient coding of its input without supervision. It consists of an

encoder network and a decoder network, and they are sequentially connected through a coding layer with small number of neurons.

In a trained autoencoder, the encoder extracts essential signals in the input into the coding layer, while the decoder tries to reconstruct
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the original input from activity in the coding layer.When the number of neurons in the coding layer is smaller than the dimensions of the

input, only signals that are dominant in the input remains in the coding layer of a trained autoencoder network. Among various types of

autoencoders, we used denoising recurrent autoencoders (Maas et al., 2012; Vincent et al., 2010) to extract dominant signals

embedded in each population activity sequence. Although autoencoders with only feedforward connections or convolutional neural

networks canalso extract latent signals in apopulation activity sequence,weused recurrent neural networks that sequentially process

the input activity because theneural networks in abrain alsoprocess input activity sequentially.Ourgoal is to understandwhether such

biologically relevant recurrent networks can extract signals from input activity without explicit teaching labels (i.e., unsupervised

learning). The latent signals extracted by a recurrent autoencoder represent the latent signals from the perspective of a recurrent

network that processes input activity sequentially through its recurrent connectiviy.

The autoencoders that we used to visualize extracted dynamics from example populations (Figure 7A) consisted of 3 hidden layers

with recurrent connectivity (1st: 50 neurons, 2nd: 10 neurons, 3rd: 50 neurons), and the activity of all neurons in a population was used

as the input to the autoencoder. On the other hand, the autoencoders that we used for quantitative across-area comparisons (Fig-

ure 7B-E) consisted of 3 hidden layers with recurrent connectivity (1st: 20 neurons, 2nd: N neurons, 3rd: 20 neurons) and processed

input activity of subsampled 240 cells. Note that 3 layers are the minimum number of layers that are required for an autoencoder

network. All recurrent neurons in the hidden layers had tanh activation functions. All neurons except for the neurons in the middle

hidden layer (coding layer) sent activity sequentially to the neurons in the next layer. However, the neurons in the coding layer

sent only the activity at the last time step to the next hidden layer. The last-time-step activity is the result of the temporal integration

of the original population activity sequence through recurrent connectivity, and the activity reflects the latent representations in the

original population activity sequence. The hidden layers after the coding layer reconstructed the original population activity sequence

from the latent representations in the coding layer. The network weights were updated by backpropagation through time with

RMSprop to minimize mean-squared-error (MSE) between the original population activity sequence and the reconstructed popula-

tion activity sequence. To ensure stable training of network weights, we clipped the gradients of network weights if their L2 norms

were greater than 1 (Gradient clipping (Pascanu et al., 2012)). To add noise robustness to the autoencoders, we applied dropout (Hin-

ton et al., 2012; Srivastava et al., 2014) to the connections between the input neurons and the neurons in the 1st hidden layer such that

50% of randomly selected connections are ablated at each training step. The network training was terminated when the MSE of a

validation set (20% of trials for Figure 7A, 10%of trials for Figure 7B-E) stopped decreasing for the consecutive 20 epochs as another

form of regularization (Early stopping). The activity of the 10 coding neurons for Figure 7A were further reduced to 2 dimensions with

multidimensional scaling to visualize the dominant population activity states. To quantify the strength of DQ signal in the activity of N

coding neurons for Figure 7B-E, we performed decoding of DQ from the activity of N coding neurons using a simple feedforward

neural network where all the N coding neurons are connected to an output neuron with tanh activation function. For each training

iteration, we used 20% of available trials as a test set to calculate the DQ decoding accuracy by the trained network, and the remain-

ing 80% of the trials were further split into validation set (10%) and training set (70%). We repeated the network training 5 times by

using different sets of trials as the test set such that we can obtain DQ predictions by the trained networks for all available trials in a

cross-validated way. For these DQ decoding analyses, we also matched the number of cells included in the inputs to the autoen-

coders across different decoding by subsampling 240 cells from the original population. For each neural population, we subsampled

240 cells in each iteration allowing repetitions with the smallest number of iterations to include every cell at least once for decoding,

and the DQ decoding accuracy from the iterations were averaged.

Deep RNN with non-specific connectivity
Neural networks with 5 recurrent layers were used to simulate how the input population activity transforms in the downstream recur-

rent layers when the synaptic weights are non-specific throughout the networks. Each recurrent layer had 1,000 neurons with tanh

activation functions, and the 5 recurrent layers were sequentially connected through feedforward connections. All neurons of a re-

corded cortical population were directly connected to the 1st recurrent layer. Each neuron in a recurrent layer was connected with all

the other neurons in the same layer, but wemade the connections between successive layers sparse by setting the connection prob-

ability of a neuron to the neurons in the next layer to 1%, 5%, 10%, 20%, or 50%. The non-specific synaptic weights were randomly

drawn from a uniform distribution on [-1, 1).

Anatomical connectivity analyses
We analyzed neural projections from the areas with high DQ coding persistency (RSC, PPC, pM2) using the neural tracing data avail-

able in the Allen Mouse Brain Connectivity Atlas (Oh et al., 2014). These projection data were originally acquired by injecting adeno-

associated virus (AAV) encoding EGFP into various target brain areas and scanning EGFP-labeled axons throughout the brain with

high-throughput serial 2-photon tomography. We used their software development kit (SDK), allensdk, to access and process their

data in Python.

Dorsal view of the Allen Reference Atlas
Allen Reference Atlas is a high-resolution anatomical 3D reference atlas for the adult mouse brain. Different brain structures are

colored differently in this atlas. All projection data in the Connectivity Atlas are registered to this reference atlas. We created a dorsal

view of the Allen Reference Atlas to indicate the virus injection coordinates and cortical projection density in the dorsal cortex. First,
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we downloaded the 3D RGB-colored atlas at the resolution of 25 mm/pix. At each anterior-posterior (AP) and medial-lateral (ML) co-

ordinate of the 3D atlas, we picked up the RGB value of the most dorsal brain surface. We obtained a dorsal view of the atlas by

projecting these dorsal RGB values onto a single 2D plane.

Selection of injection data
In the Allen Mouse Brain Connectivity Atlas, each injection experiment is labeled with the name of the injected structure. First, we

narrowed injection experiments using these annotations. We selected experiments with virus injections into retrosplenial area

(RSP), anterior area (VISa) of posterior parietal association area (PTLp), and secondary motor area (MOs). Then, we further narrowed

down injection experiments based on the exact injection coordinates. As we indicated in Figure S9, we isolated medial RSP injec-

tions, anterior VISa injections, and posterior MOs injections for RSC, PPC, and pM2, respectively. The database contains experi-

ments that were performed on wild-type mice and Cre transgenic mice for cell-type specific tracing. We used experiments from

only WT mice or combined data (WT + Cre). The projection patterns were similar in both cases (Figure S9).

Axon projection density in dorsal cortex
We analyzed the axon projection density from RSC, PPC, and pM2 in the dorsal cortex. For each injection experiment, we calculated

the projection density at each AP-ML coordinate as [# of positive pixels] / [# of all pixels] in the volume of 25 mm (AP axis)3 25 mm (ML

axis) 3 1000 mm (DV axis, from dorsal surface at each AP-ML coordinate). To create a mean projection density map, experiments

with left hemisphere injections were mirrored relative to midline before averaging. We also quantified mean projection density within

each imaging FOV that we used for in vivo 2-photon calcium imaging. Although our imaging FOVs were based on stereotactic co-

ordinates from the bregma in the Paxinos’ atlas (Paxinos and Franklin, 2004), the Allen Reference Atlas does not include coordinates

from the bregma. To register our imaging FOVs to the Allen Reference Atlas Coordinate, we calculated the scaling factors for the AP

and ML dimensions of the mouse brain to match the brain in the Paxino’s atlas to the brain in the Allen Reference Atlas. Using the

scaling factors, we estimated the coordinates of each imaging FOV on the Allen Reference Atlas. We calculated the mean signal

density within each imaging FOV of the size 500 mm3 500 mm. The mean signal density of each FOV was used to construct the con-

nectivity matrix in Figure 8C.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analyses and network simulations were performed in Python3.7 with libraries of TensorFlow (Abadi et al., 2016), scikit-learn

(Pedregosa et al., 2011), NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), and Statsmodels (Seabold and Perktold, 2010).

Statistical tests were performed either in Pythonwith SciPy and Statsmodels or in Rwith its statistics libraries. All accuracymeasures

reported in this studywere obtainedwith cross-validation. Unless otherwise noted, we split trials into training set (70%), validation set

(10%), and test set (20%) for each iteration of decoding, and repeated the network training 5 times by using different sets of trials as

the test set. When we compared DQ retrieval/decoding accuracy across different cortical populations, we matched the number of

cells in the input population activity by subsampling 240 cells in each iteration allowing repetitions with the smallest number of iter-

ations to include every cell at least once for decoding, and the accuracies from the iterations were averaged. For all the simulations

with artificial population activity, we created 10 distinct populations for each of the 3 types of coding modes by independently sam-

pling tuning curve slopes fromRSC neurons. These repetitions allowed us to tell the variability that originates from the randomness of

DQ signal assignments and randomness of network trainings. All figure plots were created using Matplotlib (Hunter, 2007) and sea-

born (Waskom, 2021) in Python.
Neuron 110, 1–14.e1–e11, February 2, 2022 e11
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Figure S1. Distributed action value coding is independent of motor plan, Related to Figure 1. 

(A-F) The tuning curves of ΔQ coding averaged across neurons with significant ΔQ coding (Regression on 

mean ready-period activity (first 2 sec window), P < 0.05, two-sided t-test) for RSC (A), PPC (B), pM2 (C), ALM 

(D), S1 (E) and V1 (F). Neurons with positive and negative slopes were separately averaged. Error bars are 

95% CI. The proportions of neurons with positive and negative slopes were balanced in each cortical area 

(RSC: 15.92 ± 1.69 % positive, 15.56 ± 1.63 % negative; PPC: 14.82 ± 1.69 % positive, 14.86 ± 1.59 % 

negative; pM2: 9.84 ± 1.22 % positive, 9.77 ± 1.15 % negative; ALM: 9.45 ± 0.99 % positive, 9.71 ± 0.95 % 

negative; S1: 9.70 ± 1.58 % positive, 10.41 ± 1.63 % negative; V1: 12.62 ± 3.05 % positive, 11.53 ± 2.80 % 

negative; mean ± s.e.m). Note that these fractions are larger than the fractions reported in Fig. 1c because 2-

sec window was used instead of 200-ms window to obtain mean activity.  

(G) Population activity states of an example RSC population during ready period in the subspace with ΔQ axis 

and choice axis from dsPCA. Mean ± SD of the activity states of trials within each ΔQ bin. dsPCA identified this 

subspace where ΔQ and the motor plan for the upcoming decision making are encoded along different axes.  

(H) Activity of ΔQ coding neurons that were identified at different time windows (yellow shadings) during ready 

period for example PPC, pM2, ALM, and V1 populations. The activity of ΔQ coding neurons that were identified 

from each time bin was averaged according to the binned ΔQ of each trial. Error bars are s.e.m. 

(I) t-values for ΔQ coding at each time bin of ready period for example populations of PPC, pM2, ALM, and V1. 

Neurons were sorted based on the t-values at the last time bin. t-values are from multiple linear regression 

model (Methods). 
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Figure S2. Distributed action value coding is updated at single-trial resolution, Related to Figure 1. 

(A-F) Change across adjacent trials in mean ready-period activity of neurons with significant ΔQ coding, plotted against 
the updates of ΔQ across adjacent trials for RSC (A), PPC (B), pM2 (C), ALM (D), S1 (E) and V1 (F). ΔQ coding 
neurons track updates of ΔQ on a trial-by-trial basis.



Figure S3

A

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

S
ig

n
a
l 
a
lo

n
g
 a

x
is

 (
r)

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

S
ig

n
a
l 
a
lo

n
g
 a

x
is

 (
r)

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

%
 v

a
ri
a
n
c
e
 e

x
p
la

in
e
d

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

%
 v

a
ri
a
n
c
e
 e

x
p
la

in
e
d

1 2 3 4 5
0

1

2

3

4

1 2 3 4 5
0

1

2

3

1 2 3 4 5
0

1

2

3

1 2 3 4 5
0

1

2

1 2 3 4 5
0

1

2

3

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

1 2 3 4 5
0

2

4

1 2 3 4 5
0

1

2

3

4

1 2 3 4 5
0.0

2.5

5.0

7.5

10.0

1 2 3 4 5
0

2

4

6

8

B

C

T
ra

in
in

g
 s

e
t

T
e

s
t 

s
e

t
RSC PPC pM2 ALM S1 V1

RSC PPC pM2 ALM S1 V1

RSC PPC pM2 ALM S1 V1

RSC PPC pM2 ALM S1 V1

T
ra

in
in

g
 s

e
t

T
e

s
t 

s
e

t

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ Qch ΣQ

Axes of

Q-free subspace
Q axes

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

Original Q Q-free

0.0

0.2

0.4

0.6

0.8

1.0

D
e
c
o
d
in

g
 a

c
c
u
ra

c
y
 (

r)

Original Q Q-free

0.0

0.2

0.4

0.6

0.8

1.0

Original Q Q-free

0.0

0.2

0.4

0.6

0.8

1.0

Original Q Q-free

0.0

0.2

0.4

0.6

0.8

1.0

Original Q Q-free

0.0

0.2

0.4

0.6

0.8

1.0

Original Q Q-free

0.0

0.2

0.4

0.6

0.8

1.0

dsPCA subspaces dsPCA subspaces dsPCA subspaces dsPCA subspaces dsPCA subspaces dsPCA subspaces

T
e

s
t 

s
e

t

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

ΔQ

Qch

ΣQ

RSC PPC pM2 ALM S1 V1

Figure S3. Demixing performance of dsPCA on the population activity from 6 cortical areas, Related to Figure 3.

(A) Fraction of activity variance out of total activity variance, along each Q-related axis and the top 5 PC axes from the 

Q-free subspace. dsPCA was applied on a subset of trials for RSC populations to identify axes (training set), and the 

performance on both the training set and the held-out trials (test set) are shown. Error bars are 95% CI.

(B) Q-related signals along each dimension identified with dsPCA for RSC populations. dsPCA was applied on a subset of 

trials to identify axes (training set), and the performance on both the training set and the held-out trials (test set) are 

shown. Pearson correlation coefficient was calculated between the projected activity and each signal. Error bars are 95% 

CI. Q-related signals are undetectable in Q-free subspace. 

(C) Decoding accuracy of Q signals from the original population activity, activity in the Q subspace (3 dimensions), and 

activity in the target-free subspace. Linear decoders with L2 regularization were used. Error bars are 95% CI. Q-related 

signals are restricted to the Q subspace after dsPCA.
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Figure S4. Population dynamics of 10 distinct RSC populations visualized by dsPCA, Related to Figure 3. 

The population activity dynamics of 10 distinct RSC neural populations in the neuronal manifolds where the ΔQ axis 
is paired with the axes that reflect major within-trial temporal activity variance in Q-free subspace. The neural trajec-
tories were aligned to either go cue (top row) or choice (bottom row). The activity was binned with 200 ms non-over-
lapping sliding windows. In the trajectories aligned to go cue, the time bins that coincide with go cue and the time 
bins immediately preceding the go cue bin were marked by circles and squares, respectively. In the trajectories 
aligned to choice, the time bins that coincide with choice timing were marked by circles. The time from go cue to 
choice was 335.36 ± 9.12 ms (mean ± s.e.m.).
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Figure S5. Velocity of RSC population dynamics along temporal axes, Related to Figure 3. 

Velocity of the RSC population activity dynamics along temporal axes identified within Q-free subspace. The 
velocity was calculated as the distance traveled between adjacent 200 ms time bins along each temporal axis. 
The RSC population trajectories accelerate ~1 sec before choice and slowly decelerate after choice. Error bars 
are s.e.m..
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Figure S6. Population coding of action probability in the recurrent layers of trained optimal and 

mouse-like RNN agents, Related to Figure 4. 

(A) Activity of the action probability output neuron is the ground truth policy values (ΔQ) that directly 
drives decisions of artificial networks. We examined the representation of the action probability in the 
population of the recurrent layer presynaptic to the output neuron.
(B) Persistency index for action probability coding in the recurrent layers of trained optimal and 
mouse-like RNN agents (mean ± CI).
(C-D) Population activity dynamics of the recurrent layers of optimal RNN agents (C) or mouse-like RNN 
agents (D) in neuronal manifolds where the action probability axis is paired with axes that reflect major 
within-trial temporal activity variance. We analyzed the dynamics of fully trained networks while they ran 
the task for 10,000 trials. dsPCA was applied on the activity between -5 and -1 time steps from choice, 
and the population activity between -5 and +5 time steps from choice was projected onto the identified 
axes to visualize the temporal dynamics of activity within these manifolds. 4 independently trained 
mouse-like RNN agents are shown. Circles indicate the choice time. Untangled cylindrical dynamics 
emerged in the recurrent networks.
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Figure S7. Distributions of the tuning curve slopes and signal-to-noise ratios of ΔQ coding among RSC 
neurons, Related to Figure 6. 
(A) Tuning curves of ΔQ coding neurons in RSC were separately averaged according to the binned percentile of 
the tuning curve slope, illustrating the heterogeneity of the tuning curve slopes.
(B) Distribution of tuning curve slopes of ΔQ coding among RSC neurons with significant ΔQ coding in the mean 
2-sec ready period activity (P < 0.01, two-sided t-test). 
(C) Distribution of the standard deviation of ΔQ signal (red) and noise (blue) of the ΔQ-coding RSC neurons (Meth-

ods). 
(D) Distribution of the signal-to-noise ratio (SNR) of ΔQ coding among RSC neurons with significant ΔQ coding. 
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Figure S8. Task-related variables that are not directly related to ΔQ are not represented as the dominant 
signals in the activity of neurons in the coding layer of trained denoising recurrent autoencoder networks, 

Related to Figure 7. 

Representation of input population activity in the coding layer of a denoising recurrent autoencoder network which 

was trained to extract major signals from an example RSC population activity. Population activity sequence during 

ready-period was used as the input. The autoencoders had 10 neurons in the coding layer. The dominant signals 

extracted in the activity of coding layer neurons were visualized by reducing the dimension to 2 using multidimen-

sional scaling. 

QR-QL (ΔQ): Action value difference between right and left actions (A). QR: Right action value (B). QL: Left action 
value (C). These variable (ΔQ and its components) are clearly represented in these dominant dimensions. 
Qch-Qunch: Action value difference between chosen and unchosen actions in the upcoming answer period (D). Qch: 
Chosen action value (E). Qunch: Unchosen action value (F). ΣQ: Sum of two action values (G). C(t): Upcoming 
choice in the current trial (H). C(t-1): Choice in the previous trial (I). R(t-1): Reward outcome in the previous trial (J).  
These variables that are not directly related to ΔQ are not clearly represented in these dimensions.
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Figure S9. Neural projections from RSC, PPC and pM2 from the Allen Connectivity Atlas dataset, 

Related to Figure 8.  

(A) 3D model highlighting the area that is annotated as retrosplenial area (RSP) in the Allen Connectivity Atlas. 

(B) Injection coordinates (top) and the resulting mean neural projection density (bottom) for the injections that 

are annotated as ‘RSP injections’ in the database. Experiments with left hemisphere injections were mirrored 

horizontally. All injections from WT mice (6 experiments), medial injections from WT mice that are within the 

medial RSC from which RSC recording data were obtained (3 experiments), all injections from both WT and 

various Cre lines (111 experiments), medial injections from both WT and various Cre lines (60 experiments, 

this condition was used for Figure 8). Projection density at each AP-ML coordinate was calculated as [# of 

positive pixels] / [# of all pixels] in the volume of 25μm (AP axis) × 25μm (ML axis) × 1000μm (DV axis, from 

dorsal surface at each AP-ML coordinate). 

(C) 3D model highlighting the area that is annotated as VISa, which is an anterior subregion of posterior 

parietal association area (PTLp), in the Allen Connectivity Atlas. 

(D) Injection coordinates (top) and the resulting mean neural projection density (bottom) for the injections that 

are annotated as ‘VISa injections’ in the database. Experiments with left hemisphere injections were mirrored 

horizontally. All injections from various Cre lines (17 experiments), anterior injections from various Cre lines 

that are within anterior VISa from which PPC recording data were obtained (9 experiments, this condition was 

used for Figure 8). No experiments from WT mice was available for VISa injections in the database. 

(E) 3D model highlighting the area that is annotated as secondary motor area (MOs) in the Allen Connectivity 

Atlas. 

(F) Injection coordinates (top) and the resulting mean neural projection density (bottom) for the injections that 

are annotated as ‘MOs injections’ in the database. Experiments with left hemisphere injections were mirrored 

horizontally. All injections from WT mice (9 experiments), posterior injections from WT mice that are within 

posterior MOs, from which pM2 recording data were obtained (2 experiments), all injections from both WT and 

various Cre lines (145 experiments), posterior injections from both WT and various Cre lines (33 experiments, 

this condition was used for Figure 8).  
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Figure S10. Signal leakage simulations with different areas and different connection probabilities, 

Related to Figure 8.  

(A) PPC population activity sequences were processed through 5 recurrent layers with non-specific 

connectivity. Connection probability from layer to layer was set to 20%. 

(B) Fractions of ΔQ coding neurons at each of the 200 ms time bins during ready period (Regression, P < 0.05, 

two-sided t-test). Error bars are s.e.m.  

(C) Mean fractions of ΔQ coding neurons at each layer during ready period. Fractions across time bins within 

the ready period were averaged for each population. Artificial manipulations of ΔQ coding persistency does not 
affect the fractions of ΔQ coding neurons in the area, but affect the fractions in the downstream areas. Error 

bars are 95% CI. 

(D) ΔQ coding persistency at each layer. Artificial manipulations of ΔQ coding persistency affect the 
persistency in the downstream areas. Error bars are 95% CI.  

(E-H) Same as (A-D) for pM2 populations. 

(I) Fractions of ΔQ coding neurons at each of the 200 ms time bins during ready period when the connection 

probability of feed-forward connections between layers was varied. RSC population activity was used. Error 

bars are s.e.m. 

(J) Mean fractions of ΔQ coding neurons at each layer when the connection probability of feed-forward 

connections between layers was varied. Error bars are 95% CI. 

(K) ΔQ coding persistency at each layer when the connection probability of feed-forward connections between 

layers was varied. Error bars are 95% CI. 
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