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Ma Z, Liu H, Komiyama T, Wessel R. Stability of motor cortex
network states during learning-associated neural reorganizations. J
Neurophysiol 124: 1327–1342, 2020. First published September 16,
2020; doi:10.1152/jn.00061.2020.—A substantial reorganization of
neural activity and neuron-to-movement relationship in motor cortical
circuits accompanies the emergence of reproducible movement pat-
terns during motor learning. Little is known about how this tempest of
neural activity restructuring impacts the stability of network states in
recurrent cortical circuits. To investigate this issue, we reanalyzed data
in which we recorded for 14 days via population calcium imaging the
activity of the same neural populations of pyramidal neurons in layer
2/3 and layer 5 of forelimb motor and premotor cortex in mice during
the daily learning of a lever-press task. We found that motor cortex
network states remained stable with respect to the critical network
state during the extensive reorganization of both neural population ac-
tivity and its relation to lever movement throughout learning.
Specifically, layer 2/3 cortical circuits unceasingly displayed robust
evidence for operating at the critical network state, a regime that max-
imizes information capacity and transmission and provides a balance
between network robustness and flexibility. In contrast, layer 5 circuits
operated away from the critical network state for all 14 days of re-
cording and learning. In conclusion, this result indicates that the wide-
ranging malleability of synapses, neurons, and neural connectivity dur-
ing learning operates within the constraint of a stable and layer-spe-
cific network state regarding dynamic criticality, and suggests that
different cortical layers operate under distinct constraints because of
their specialized goals.

NEW & NOTEWORTHY The neural activity reorganizes through-
out motor learning, but how this reorganization impacts the stability
of network states is unclear. We used two-photon calcium imaging
to investigate how the network states in layer 2/3 and layer 5 of fore-
limb motor and premotor cortex are modulated by motor learning.
We show that motor cortex network states are layer-specific and con-
stant regarding criticality during neural activity reorganization, and
suggests that layer-specific constraints could be motivated by differ-
ent functions.

brain state; criticality; motor learning; neuronal avalanches; two-pho-
ton calcium imaging

INTRODUCTION

Motor learning manifests itself as the emergence of a reproduc-
ible movement pattern (Fig. 1A), which involves the concurrent

reorganization of synaptic connectivity, neural activity, and neu-
ron-to-movement transformation in recurrent neural networks
(Fig. 1B) (Chen et al. 2015; Costa et al. 2004; Makino et al. 2017;
Masamizu et al. 2014; Peters et al. 2014, 2017a). The restructur-
ing of complex neural networks during learning poses fundamen-
tal questions as to the stability of the network state (Liu and
Barabási 2016).
The motor cortex has emerged as a central locus where

changes in neural circuit take place during motor learning
(Peters et al. 2017b; Sanes and Donoghue 2000). For example,
learning of motor skills can increase the representation of corre-
sponding body parts in the motor cortex (Nudo et al. 1996), indi-
vidual motor cortex neurons can change their activity during
motor learning (Costa et al. 2004; Li et al. 2001; Masamizu et
al. 2014; Rokni et al. 2007). These changes generate a neural ac-
tivity pattern that relates to the learned movement (Peters et al.
2014). At the synaptic level, motor learning induces LTP-like
plasticity in the motor cortex (Rioult-Pedotti et al. 2000), synap-
tic reorganization among functionally related layer 5 neurons
(Biane et al. 2019), and turnover of dendritic spines and inhibi-
tory synapses in a cell-type-specific manner (Chen et al. 2015;
Fu et al. 2012; Xu et al. 2009; Yang et al. 2009).
Whether this massive synaptic and neuronal reorganiza-

tion during learning takes place within the constraint of sta-
ble cortical circuit dynamics is unknown. Several pieces of
evidence point toward reorganization while maintaining a
given network state. First, learning is accompanied by spine
formation, followed by a period of spine elimination, which
returns the total number of spines to baseline (Harms et al.
2008; Xu et al. 2009; Yang et al. 2009). Second, learning-
induced synaptic potentiation may be balanced by synaptic
depression rather than generally potentiating local connec-
tions (Cohen and Castro-Alamancos 2005). Third, learning-
induced changes in inhibition may be controlled by the cell-
type specific activation of neurons with low and high excita-
tory-to-inhibitory synaptic-density ratios (Donato et al.
2013). Together, these observations suggest network-state
invariance during learning as a plausible possibility.
Previously described states of cortical circuits include oscilla-

tory (Hoseini et al. 2017; Hoseini and Wessel 2016; Speed et al.
2019), asynchronous (Renart et al. 2010), chaotic (van Vreeswijk
and Sompolinsky 1998), or critical (Beggs and Plenz 2003) net-
work states. Of these, the critical network state (Fig. 1, C and D)
plays a prominent role in the study of cortical circuit dynamics,Correspondence: Z. Ma (zhengyuma@wustl.edu).
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as the critical network state is optimized for signal processing
(Clawson et al. 2017; Gautam et al. 2015; Haldeman and Beggs
2005; Tomen et al. 2019), may provide neural circuits with an
optimal balance between robustness and flexibility (Muñoz
2018), and can represent a homeostatic set point (Ma et al. 2019).
Qualitatively, the critical network state resides at the boundary
between strongly and weakly coordinated population activity cor-
responding to phases of order (strongly coupled) and disorder,
respectively. Mathematically, the critical network state is charac-
terized by scale-free activity covariance, i.e., the distance depend-
ence of the covariance follows a power law (Beggs and Timme
2012). This brief survey of network states then bares the signifi-
cant question: Does population activity in motor cortex reorgan-
ize during motor learning within the constraint of operating near
the critical network state?
To address this question, we reanalyzed data from previous

experiments in which we monitored via population calcium
imaging the activity of hundreds of pyramidal neurons in L2/3
and L5 of forelimb M1 and M2 of head-fixed mice during motor
learning (Makino et al. 2017; Peters et al. 2014, 2017a). Water-
restricted mice were trained daily on a lever-press task for �14
days, while we recorded the activity of the same neuronal popu-
lations from �200 neurons per mouse. We analyzed the popula-
tion activity with respect to the reorganization of neural activity,
its relation to lever movement, and the network state. We found

that motor cortex network states are layer-specific and remain
constant with respect to criticality during massive neural activity
reorganization.

MATERIALS AND METHODS

We reanalyzed data from three previously published data sets
(Makino et al. 2017; Peters et al. 2014, 2017a). All procedures were in
accordance with protocols approved by the UCSD Institutional Animal
Care and Use Committee and guidelines of the National Institute of
Health. All data are available upon reasonable request.

Experimental Design

Behavior. Water-restricted mice were trained daily for 14 days to
perform a lever-press task, while two-photon imaging from motor cor-
tex was applied simultaneously (Makino et al. 2017; Peters et al. 2014,
2017a).

The lever consisted of a handle glued to a piezoelectric flexible force
transducer (LCL-113G, Omega Engineering). Voltage from the force
transducer, which was linearly proportional to the lever displacement,
was continuously monitored at 10 kHz using a data-acquisition device
(LabJack) and software (LabVIEW, National Instruments).

A 6-kHz tone marked a period during which lever press was
rewarded with water (�8 ml per trial) paired with a 500-ms, 12-kHz
tone, followed by an intertrial interval (variable duration, see below).
Lever-press was defined as crossing of two thresholds (�1.5 mm and
�3 mm below the resting position) within 200 ms. The 3-mm threshold
defined the displacement required, and the 1.5-mm threshold ensured
that the mouse did not hold the lever near the lower threshold. Failure
to press during the cue period triggered a loud white noise and an inter-
trial interval. Lever presses during intertrial intervals were neither
rewarded nor punished. The intertrial interval was increased over the
first three sessions from 2–4 to 8–12 s. Each session lasted 20–30 min
and 100–200 trials until terminated when mice stopped performing or
consumed 1 ml of water. Experiments lasted for 11 to 14 sessions.

Voltage from the piezoelectric lever during each session was parsed
into movement and quiescence epochs as previously described (Peters
et al. 2014). Briefly, movement was first identified by velocity thresh-
old. Movement epochs were then refined by combining nearby epochs,
eliminating small epochs and refining the start and end times of move-
ment epochs according to when the lever position, respectively left or
entered a baseline defined by adjacent quiescent epochs. Visual inspec-
tion confirmed accurate demarcation of behavior.

Imaging. For all imaging data sets considered (Makino et al. 2017;
Peters et al. 2014, 2017a), we conducted imaging in awake animals with
a commercial two-photon microscope (B-scope, Thorlabs) running
Scanimage using a �16 0.8 NA objective (NIKON) with excitation at
925-nm (Ti-Sa laser, Newport). We acquired images with Scanimage 4.1
(Vidrio Technologies) at a rate of �28 Hz, covering 512 � 512 square
pixels. Within the same animal, we imaged the activity of the same neu-
ral population over the course of 2 wk, while mice simultaneously
learned and performed the lever-press task.

We transfected and imaged L2/3 neurons in the caudal forelimb area
of the motor cortex (M1) with the Ca indicator GCaMP5G and identi-
fied excitatory and inhibitory neurons as described before (Peters et al.
2014). Within a field of view covering 472 � 508 mm, a total of 202
±18 [mean±standard error of the mean (SE); n = 7 animals] neurons
were imaged in each animal, with 20.9±6% being inhibitory.

For the imaging of L5 neuron activity in M1, we used the Cre-FLEX
system to selectively express the calcium indicator GCaMP6f in corti-
cospinal cells in the motor cortex as described before (Peters et al.
2017a). In brief, we imaged the apical dendritic trunks of GCaMP6f-
expressing dendrites passing through L2/3. The locations of the den-
drites were stable across days and the same dendrites could be reliably
identified each day. GCaMP6f fluorescence within these dendrites was
observed as bright discrete points in a very low-noise background,

P
D

F(
S

)

10310010-5

100

      Neural 
avalanche size

DC

B

A

P

?
P

?

P

0 0.05 0.1 0.15 0.2 0.25 0.3

N
eu

ro
n

100 ms

critical state ?

Le
ve

r p
os

iti
on

B
eh

av
io

r
N

eu
ra

l n
et

w
or

k

3 mm
1 s

ExpertMiddleNaive

movement onset

Fig. 1. Does cortical population activity deviate from the critical network state
while neural circuits undergo massive reorganizations during motor learning? A:
traces of lever position in multiple trials from one representative mouse. Gray,
individual trials; black, average of all trials; red, onset of the movement; left: one
session from naive stage; middle: one session from middle learning stage; right:
one session from expert stage. B: schematic of a recurrent neural circuit consist-
ing of neurons (gray), connections (black), neural representation of movement
(letters: P for position, v̄ for velocity, v for speed) and network state (background
color). Question marks mean the network states are unknown. C: neuronal ava-
lanches (gray) are contiguous bouts of spikes (black raster) across the population
of neurons. The spike count within an avalanche determines the avalanche size.
D: the shape of the avalanche size distribution reflects the level of spatiotempo-
ral correlation within the network. A power law avalanche size distribution is a
characteristic feature of the critical network state. Question mark means whether
the network state is critical state is unclear. PDF, probability density function; S,
avalanche size.
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allowing for automated region-of-interest creation. We performed si-
multaneous imaging of dendrites and their parent somata by rapid 3D
scanning and found that dendritic and somatic signals were nearly com-
pletely correlated. Thus, calcium signals in dendritic trunks of these
neurons faithfully report somatic spiking activity. Also, imaging of sib-
ling dendrites that connect with the same parent somata showed that
the activities of sibling dendrites are very highly correlated with each
other. We were able to use this information to detect “presumed sib-
lings” based on activity correlations and combine them by averaging
the activity of those presumed siblings to avoid counting the same neu-
rons multiple times. Within a field of view covering �340 μm� 340
μm, we thus inferred the activity from 194±68 corticospinal neurons
per mouse (mean ± SD; n = 8 animals).

For the imaging of L2/3 and L5 neuron activity in M2, we used
CaMK2-tTA::tetO-GCaMP6s double transgenic mice as described
before (Makino et al. 2017). Within a field of view covering 472� 508
mm, imaging was performed�250 mm deep from the dura for L2/3 and
500 mm for L5. M2 L5 neurons were identified by cortical depth only,
so they are a mixed population not defined by their projections. A total
of three mice were imaged for L2/3 only, two mice for L5 only, and
five mice for both (alternating between L2/3 and L5 each day).

Signal Processing and Statistical Analysis

Processing fluorescence time series. For each ROI, we generated
1) background-subtracted and smoothed fluorescence time series
(DF/F0) and 2) calcium events, as described before (Peters et al.
2014). In brief, calcium events were defined as sharp rises of DF/F0

above a “threshold” value. A calcium event trace was then con-
structed, which was zero except for frames with detected events.
Each event was assigned an amplitude equal to the difference
between the peak DF/F0 and the “baseline” DF/F0 for that event.
Inferred spike probability (ISP) was computed from the background-
subtracted and smoothed fluorescence time series (DF/F0) using a
fast, nonnegative deconvolution method (Vogelstein et al. 2010).
All calcium signals were deconvolved to extract underlying spiking
activity and thus the effect of different kinetics of sensors has been
minimized. The inferred spike rate was computed using the spike trig-
gered mixture algorithm (Theis et al. 2016). Briefly, the DF/F0 traces
were first upsampled to 100 Hz. For each time point, the spike number
during the 10-ms bin was inferred using “an extension of generalized lin-
ear model” trained on simultaneous recordings of spikes and calcium
traces. For all the analysis below on either single neuron activity or neu-
ral population activities, calcium events, inferred spike probability and
inferred spike rate yielded qualitatively similar results.

Evaluating coordinated inferred neural activity. From the inferred
spike rates (ISR) of the recorded pyramidal neurons, we obtained the
zero-lag pairwise Pearson cross-correlation coefficients of the inferred
spike probability using the MATLAB corrcoef routine. We clustered
the resulting matrix of cross-correlation coefficients in session 1, using
hierarchical clustering with maximum or complete-linkage clustering
(MATLAB dendrogram routine). We retained the neuronal order in
subsequent sessions. To quantify the change of Pearson cross-correla-
tion coefficients across sessions, we computed the correlations of the
Pearson cross-correlation coefficients across adjacent sessions.

Relating inferred neural activity to lever position. To investigate a
potential relation between neural activity and lever position within a
session (�30 min), we concatenated all movement episodes and the
corresponding inferred spike probability (ISP) for each recorded neu-
ron, resulting in concurrent long time series of duration T; one for the
lever position and one for the inferred spike probability for each
recorded neuron. Here, we assumed zero lag between the lever position
and inferred spike probability (but see The Relation Between Neural
Activity and Lever Position Reorganizes in RESULTS). We spatially
binned the total range of continuous lever position (typical range was
below 2 mm) into discrete position segments of 0.04-mm bin size. For
a given neuron, we computed the average inferred spike probability for

each position segment and determined the “peak averaged inferred
spike probability” for that neuron and session.

To evaluate the statistical significance of the peak averaged inferred
spike probability, we shifted the concatenated lever position time series
(of duration T) by an amount dt (<T) relative to the inferred spike prob-
ability. To ensure continuity of the concatenated lever position time se-
ries, we inserted the clipped end back at the beginning, thus
accomplishing a circular shuffling. From the thus shifted concatenated
lever position time series, we computed the average inferred spike
probability for each position segment. We repeated this procedure
1,000 times, each time drawing the value for dt from a uniform distribu-
tion in the range from 0 to T. Finally, we accepted the peak averaged
inferred spike probability for the original time series as significant,
when the peak averaged inferred spike probability for the original time
series was larger than the peak averaged inferred spike probability for
at least 950 of the shuffled cases.

For a neuron with a significant peak averaged inferred spike proba-
bility in two adjacent sessions, we determined the “lever position of
peak averaged inferred spike probability” in each session. We classified
a neuron as “consistent,” when the difference in the lever position of
peak averaged inferred spike probability for adjacent sessions was 0.2
mm or less. For all pairs of adjacent sessions, we computed the fraction
of consistent neurons. In addition, we computed the fraction of consist-
ent neurons for pairs of sessions of different intervals.

Relating inferred neural activity to three aspects of lever move-
ment. In addition, we evaluated the relation between the neuron’s
recorded DF/F0 and three related aspects of lever movement, namely
lever position, velocity (time derivative of lever position), and speed
(absolute value of lever velocity). For a given session, we concatenated
all movement episodes and the corresponding DF/F0 for each recorded
neuron, as described above. From the maximum value of the cross-cor-
relation between the lever position and the population activity (sum of
DF/F0 for all recorded neurons), we estimated a session-unique lag
between the lever position and the single-neuron DF/F0 time series. We
then calculated the cross-correlation coefficients between a neuron’s
DF/F0 and the three aspects of lever movement, i.e., lever position, ve-
locity, and speed. To evaluate the significance of the thus calculated
cross-correlation coefficients, we compared against corresponding
cross-correlation coefficients calculated from a neuron’s DF/F0 and the
three aspects of lever movement from shuffled movements (95% confi-
dent intervals). Specifically, while keeping the sequence of concaten-
ated neural DF/F0 recordings, we shuffled the movement chunks and
then concatenated them. We repeated that procedure for 1,000 times.
Each time, we also reversed the time series within each movement
chunk once. From the thus-described evaluation of significance, we cal-
culated the fraction of neurons with activity significantly correlated
with at least one aspect of lever movement within a session.

Following this classification of the relation between neural activity
and aspects of lever movement for each session, we assigned a numeri-
cal value (�2 to +2) to each neuron labeling the type of relation: lever
speed (�2), lever velocity (�1), no relation (0), lever position (1), and
more than one aspect of lever movement (2). While these choices of nu-
merical labels are arbitrary, we checked that the subsequent analysis is
robust with respect to the particular choice being made. This labeling
procedure resulted in a vector of length equal the number of neurons
and of five values ranging from �2 to 2. We refer to the cross-correla-
tion coefficient from pairs of such vectors from adjacent sessions as the
“Correlation of representations in adjacent sessions.” To evaluate the
statistical significance of these cross-correlation coefficients, we
repeated the analysis on shuffled lever movement epochs as described
above.

Neuronal avalanche analysis. The recording resolution of two-pho-
ton calcium imaging was around 28 Hz. We inferred the spike probabil-
ity (rate) by different signal processing methods, including nonnegative
deconvolution (Vogelstein et al. 2010) and spike-triggered mixture
algorithm (Theis et al. 2016). The nonnegative deconvolution methods
returned spike probability with roughly 28 Hz. We upsampled the
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signal to 100 Hz in the spike triggered mixture algorithm. We did neu-
ral avalanche analysis based on both 28-Hz and 100-Hz data. Both sig-
nal preprocessing procedures returns us similar results on network state
study.

For each recorded neuron, we thresholded the ISP (ISR) at 3 SDs
(SD determined from the inferred spike probabilities of the entire popu-
lation in each session), and thus binarized the ISP of each neuron into a
binary activity time series. We also tested threshold at 2.8 SDs and 3.2
SDs. The evaluations of network state (see Motor Cortex Network
States Remain Stable with Respect to Criticality During Neural Activity
Reorganization in RESULTS) were robust for threshold values within this
range. To obtain the network activity, we summed the binarized ISP
values across neurons in a time bin. Based on the network activity, we
defined a “neuronal avalanche” by introducing a threshold. We tested
the threshold from 25th percentile to 50th percentile of network activ-
ity. Since the results of network state evaluations were robust for net-
work thresholds in this range, we chose the 35th percentile value of
network activity as the network threshold for all subsequent analysis.

Neuronal avalanche distributions are naturally disturbed at the lower
end from systematic recording errors (noise) and at the upper end from
finite size effects. Such disturbances bias attempts of power law evalua-
tions. We therefore followed documented methods (Karimipanah et al.
2017a; Shew et al. 2015; Virkar and Clauset 2014) of truncated power
law fitting to the observed neuronal avalanche distributions. Using
maximum likelihood estimation methods (Clauset et al. 2009), we fitted

a truncated power law f ðSÞ ¼ S�sPSmax

Smin
S�s

to the avalanche size distribu-

tion of Nav avalanches using the following iterative procedure
(Karimipanah et al. 2017a). 1) The maximum avalanche size Smax was
taken as the largest observed avalanche size Sk. 2) The exponent s was
estimated for all values of the minimum avalanche size Smin ranging
from 1 to Sk/20 and the corresponding Kolmogorov-Smirnov (KS) val-
ues were obtained. 3) The minimum avalanche size Smin and the corre-
sponding exponent s yielding the smallest KS value were chosen. 4)
When KS < 1ffiffiffiffiffi

Nav

p the exponent estimation was completed. Otherwise,

the procedure 2) to 4) was repeated with the maximum avalanche size

Smax reduced by 1 until the condition KS < 1ffiffiffiffiffi
Nav

p was satisfied. In some

cases, KS was stable (dKS<0.001, dKS is the absolute change of KS)
when we changed maximum avalanche size; we then forced to break
the iteration. We applied the same fitting procedure to the avalanche
duration distributions.

To evaluate whether a power law was a plausible fit of an avalanche
distribution, we performed hypothesis testing. We simulated 1,000 arti-
ficial power law distributions (surrogate distributions) with the same
exponent, number of avalanches, minimum avalanche size, and maxi-
mum avalanche size, as estimated from the experimental avalanche dis-
tribution. Specifically, using the inverse method, the surrogate

distributions were generated according to S ¼ Smin 1–rð Þ� 1
s�1ð Þ where r

was a random number drawn from a uniform distribution between 0 and
1. Thereafter, the distribution was upper-truncated by setting a cutoff at
the higher boundary value in the empirical data Smax. This procedure
worked well for generating avalanches of Smin larger than 1. For Smin=1,
we used an alternative acceptance-rejection method (Clauset et al. 2009).

The deviation between the simulated surrogate distributions and a
perfect power law was quantified with the KS statistics as KSsurrogated.
The P-value was calculated as the fraction of the surrogate distributions
with KS values larger than the KS value of the corresponding experi-
mental avalanche distribution. KSsurrogated here is also influenced by the
number of avalanches. When the number of avalanches is small,
KSsurrogated tends to be large. That’s a natural flaw of small number of
avalanches. We took the significance level to be 0.05, i.e., for P<0.05
the power law hypothesis was rejected, whereas for P�0.05 the power
law hypothesis was not rejected.

The uncertainty of the exponent estimation was computed using boot-
strap method. After estimating the exponent from the experimental ava-
lanche distribution, we resampled actual avalanches (with replacement)

1,000 times and then fitted the resampled data to a power law and esti-
mated the exponent. The standard deviation of reestimated exponents
provided an estimate of the uncertainty in the exponent estimation from
the experimental avalanche distribution.

To test whether average avalanche size scales with duration accord-
ing to <S>�Db, we estimated the fitted exponent bfit from the experi-
mental data using linear regression in logarithmic axes. We then
compared the fitted exponent bfit to the predicted bpred, where the pre-
dicted exponent bpred ¼ a–1

s–1 was obtained from the estimated size and
duration exponents (see Motor Cortex Network States Remain Stable
with Respect to Criticality During Neural Activity Reorganization).

To evaluate the deviation of avalanche size distributions from power
laws across sessions, we used the previously developed statistical mea-
sure κ (Shew et al. 2009, 2011). In brief, we fitted a power law and the
corresponding exponent s to an empirical avalanche size distribution
and then generated a surrogate (theoretical) avalanche size distribution
within the range from Smin to Smax. We quantified the two distributions
in terms of the corresponding cumulative probability distributions G(S)
and GTheoretical(S), for empirical and theoretical distributions, respec-
tively. The cumulative probability distribution describes the probability
of observing an avalanche with size less than S. By definition, κ equals
1 plus the average of differences between FTheoretical(S) and F(S), i.e.,

j ¼ 1þ 1
Nmax�Nminþ1

PNmax

S¼Nmin
GTheoretical Sð Þ � G Sð Þ� �

. In other words,

κ�1 indicates a good match between the empirical distribution F(S)
and the theoretical power law distribution FTheoretical(S).

Friedman et al. (2012) demonstrated that the size versus duration
exponent, b, can be used to accomplish avalanche shape collapse,
where avalanche profiles of different sizes are revealed to be copies of
each other at different scales. When the system is operating near the
critical state, avalanches of all durations will reflect the same scaled
mean shape. The average number of neurons firing at time t within an
avalanche of duration D can be described as S(t,D)!Dc F(t/D), where

F is a universal function determined by t/D. Given S Dð Þ ¼ ÐD
0
s t;Dð Þdt,

the relationship between c and b is c=b�1. We utilized the Neural
Complexity and Criticality (NCC) toolbox in MATLAB (Marshall et
al. 2016) to perform shape collapse on our data. To be more specific, a

scaling exponent b was assigned to compute c, and then
D

s t;Dð Þ
Dc

E
was

calculated as F(t/D). Here, hi denotes the average over avalanches with
the same duration. A collection of F(t/D) were extracted for various av-
alanche durations as F. The average normalized variance of F(t/D) over
D is the error for shape collapse under this scaling exponent, as Var(F)/
(max(F)�min(F))2. Via this method, a range of scaling exponents (b)
are tested, and the exponent that produces the best shape collapse
(smallest variance-based error) is selected as the scaling exponent. We
used this method to calculate variance-based error to measure how
closely scaled avalanche shapes fit the mean.

Neural avalanche analysis validation test on model. To validate of
the neural avalanche analysis method, we used a probabilistic integrate
and fire (PIF) neural model (Karimipanah et al. 2017b; Larremore et al.
2011) with N=2,000 neurons. The strength of the connection from neu-
ron j to i is quantified in terms of the transition probability Pij, which is
the probability that a spike in neuron j causes a spike in neuron i in the
next simulation time step. For a network of N neurons and an average
connectivity K (we chose K=3*N/100), each neuron is connected to
other neurons with probability K/N For each connection among neu-
rons, a Pij is assigned by drawing a random number from uniform dis-
tribution in the interval [0 2/K]. With a sufficiently large N, this yields a
network with a uniformly distributed transition probability Pij with av-
erage value equal to 1/K, and a matrix Pij with maximum absolute
eigenvalue of 1. At each time step, the states of all neurons are updated
synchronously according to the following probability:

Pi tþ 1ð Þ ¼ P itþ1jJ tð Þ� � ¼ 1� 1� gi tð Þ
� �Y

j2J tð Þf g 1� Pijð Þ

where P(it+1|J(t)) denotes the probability of neuron i spikes at time t+1
given that the set of neurons j[J(t) spike at the previous time-step t,

1330 STABILITY OF MOTOR CORTEX NETWORK STATES DURING LEARNING

J Neurophysiol � doi:10.1152/jn.00061.2020 � www.jn.org
Downloaded from journals.physiology.org/journal/jn at UC San Diego Lib (137.110.082.026) on June 4, 2021.

http://www.jn.org


gi(t) is the probability of neuron i spikes only due to external input, and
J(t) denotes the set of all neurons that spike at time t. It should be noted
that this equation is valid only when the spikes of all neurons in j[J(t)
can be assumed as independent with a good approximation. In other
words, it entails a locally treelike propagation of activity, which has
been shown to be a good approximation for a wide range of connectiv-
ity (Larremore et al. 2011). At the large size limit (N�1) and assuming
that Pij inversely scales with N (Pij�1/K), the above equation can be
approximated as follows:

Xi tþ 1ð Þ ¼ h 1� gi tð Þ
� �X

j
PijXj tð Þ þ gi tð Þ � ni tð Þ

h i

where the binary state Xi(t) of neuron i denotes whether the model neu-
ron spikes (Xi(t)=1) or does not spike (Xi(t)=0) at time t. Here, ni(t) is a
random number in [0 1] drawn from a uniform distribution, and h is the
step function. In addition to the update rule, a refractory period of two
time steps was implemented. The external input gi(t) was chosen to be
smaller than the transition probability Pij, which is small for large net-
works, Pij�1/K. The maximum eigenvalue k of the transition probabil-
ity matrix Pij describes the network state at the infinite-size limit:
k�1denotes the critical regime.

We applied the KS avalanche analysis method we used on the empir-
ical avalanche distribution onto this PIF modeling spikes. To study the
influence of convolution-sampling-deconvolution procedure on ava-
lanche distributions, we set each time step as 2 ms. To mimic the time
course of the experimentally observed fluorescent signal, we convolved
the simulated spike trains. To imitate the low temporal resolution of
imaging, we then sampled the convolved version of the simulated spike
trains at the lower temporal resolution. Next, we applied nonnegative
deconvolution (Vogelstein et al. 2010) to the thus sampled convolved
simulated spike train and thus computed the inferred spike probabil-
ities. We utilized the same avalanche analysis procedure on the thus
obtained inferred spike probabilities from simulated spike trains. This
convolution-sampling-deconvolution returns us avalanche size/duration
distributions with bias from true power law in the head and tail part.
The test on simulated data validated the KS power law fitting method
on avalanche distributions with lower and upper limits (see RESULTS).

Branching ratio. We followed a published method to compute the
branching ratio (Wilting and Priesemann 2018). For a branching pro-
cess, if the branching parameter is a fixed value, then hAtþ1jAti ¼
mAt þ h, where At is full activity at time t, hi denotes the conditional
expectation, m is the branching ratio, and h is the mean rate of external
drive. Subsampled activity at is proportional to At on average
hatjAti ¼ lAt þ g with constants l and g. Subsampling process leads to

a bias m l2 Var At½ 	
Var at½ 	 � 1

� �
on the estimator. Instead of using time t and

t+1, the improved method focuses on times t and t+k with different
time lags k = 1. . ., kmaximum. Under full sampling, one expects rk = mk,
where rk is a collection of linear regression slopes. Under subsampling

rk ¼ l2 Var At½ 	
Var at½ 	m

k ¼ bmk, where b is a constant. Generating mk with a

collection of k, we can obtain an exponential curve, and then compute
the branching ratio m from this curve.

RESULTS

To understand how the change of neural activity during learn-
ing impacts the network state (Fig. 1), we sought to quantify the
neural activity reorganization while mice improved on a quanti-
fiable behavior (Fig. 2). In these previously published experi-
ments (see METHODS), we trained water-restricted mice daily for
14 days to perform a cued lever-press task. Mice received a
water reward when, following an auditory cue, they pushed a le-
ver across a threshold. Lever movements became increasingly
stereotyped across training sessions (Peters et al. 2014). The
motor cortex is necessary for this task (Makino et al. 2017;
Peters et al. 2014). We therefore monitored via chronic two-
photon population calcium imaging the neural activity in M1
and M2 for both L2/3 and L5 of the same populations of hun-
dreds of neurons over the course of two weeks while head-fixed
mice performed the described lever push task (Makino et al.
2017; Peters et al. 2014, 2017a). From the background-sub-
tracted and smoothed fluorescence time series (DF/F0) for each
ROI, we inferred neural signal using several algorithms
(METHODS).

Neural Activity Reorganizes During Motor Learning

The time-averaged inferred spike rate of individual recorded
neurons within a given session changed across the 14 recordings
sessions [Fig. 3A, Supplemental Fig. S1 (https://figshare.com/s/
9245c5019517cf3912ec)]. The observed changes included neu-
rons which were silent at the early sessions but then became
active with relative high rates in later sessions and vice versa.
Specifically, 33% of the 5,899 neurons increased their ISR by
more than 10%, whereas 25% of the neurons decreased their
ISR by more than 10% from early to late session. Relevant for
the question of network stability addressed in this study, the
overall population activity remained largely stable for the four
populations of neurons. Specifically, the average ratio of
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population firing rate of late to early session over all samples
was 1.07± 0.012.
The rearrangement of neuronal activity implies a concurrent

rearrangement of coordinated activity. To evaluate such coordi-
nation, we computed the Pearson cross-correlation of inferred
spike rate for all pairs of neurons for each session, clustered the
correlation matrix on the first session, and kept the order of neu-
rons for all subsequent sessions (Fig. 3B). Finally, we quantified
changes of coordination across sessions by computing the corre-
lation of the correlation matrix from adjacent sessions (Fig. 3C).
Changes in coordination were most pronounced from session 1
to 2, and the changes were not significant for subsequent ses-
sions [Fig. 3, C and D, Supplemental Fig. S2 (https://figshare.
com/s/9245c5019517cf3912ec)]. Specifically, according to two-
samples t test, the correlations of correlations for adjacent days
were significantly smaller (P < 0.05) for the naive stage (ses-
sions 1 and 2) compared with middle (sessions 5–7) and late
(sessions 11–14) stages.

The Relation Between Neural Activity and Lever Position
Reorganizes

For any given session, a subset of the recorded neurons dis-
played a largely repeated activity time course across the many
epochs of stereotyped lever movement within that session. For
each session, we quantified the relation between neural activity
and lever position as follows (Driscoll et al. 2017). For a given
neuron, we computed the average inferred spike probability ver-
sus lever position and determined the “peak position” and its
statistical significance of averaged inferred spike probability for
that neuron and session (Fig. 4A). We noticed that the peak

position for a given neuron varied across sessions. To quantify
this variability, we computed for a given neuron the “difference
of peak position” for adjacent sessions (Fig. 4A). Finally, we
classified a neuron as consistent when the difference in the peak
position for two sessions was 0.2 mm or less (Fig. 4B). Armed
with this quantification framework, we computed the fraction of
neurons with consistent peak position for pairs of sessions of
different intervals to evaluated changes in peak position across
different time scales. During the first seven sessions of motor
learning, the fraction of neurons with consistent peak position
decreased with increasing time interval between sessions; this
trend persisted, but slowed, for expert mice (second week) (Fig.
4C). To evaluate the statistical significance of the fraction of
consistent neurons, we kept the “lever position of peak averaged
inferred spike probability” in each session, but reassigned them
to any of the recorded neurons at random. We then classified a
neuron as consistent, as described above. In this shuffled condi-
tion, the fractions of consistent neurons were substantially
lower, indicating that the analysis depends on each neuron’s ac-
tivity relative to the lever position.
Motivated by the observed relation between motor cortex sin-

gle-neuron activity and lever position (Fig. 4), we asked whether
a relation between single-neuron activity and other aspects of le-
ver movement existed as well. To address this question, we
selected three aspect of lever movement, namely lever position,
velocity (derivative of lever position), and speed (absolute value
of lever velocity) (Fig. 5A). For each neuron, we calculated the
cross-correlation coefficients between single-neuron activity
and the three lever movement aspects during lever move-
ments (Fig. 5A). For a given recording session, neural activity
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of a fraction of the recorded neurons were significantly corre-
lated with either lever position, velocity, or speed, or with
two or three of the lever movement aspects [Fig. 5B; M1 L2/
3; session 2; Supplemental Fig. S3 (https://figshare.com/s/
9245c5019517cf3912ec)]. Monitoring the same group of neu-
rons for 14 days revealed a drift in the correlation of the neural
activity with the lever movement aspects across sessions [Fig.
5C; same mouse as Fig. 5B, Supplemental Fig. S4 (https://
figshare.com/s/9245c5019517cf3912ec)]. Importantly, the corre-
lation between neural activity and lever movement aspect in one
session was significantly more similar with the correlation in the
previous session than chance (Fig. 5D). This similarity of correla-
tions in adjacent sessions increased from the naive to the expert
mice [Fig. 5E, Supplemental Fig. S3 (https://figshare.com/s/
9245c5019517cf3912ec)].
In summary, our new analysis confirms and extends previous

findings that the activity of all four populations of neurons (L2/3
and L5 in M1 and M2) reorganizes during motor learning.

Motor Cortex Network States Remain Stable with Respect to
Criticality During Neural Activity Reorganization

The observed massive reorganization of neural activity (Fig.
3) and its relation to lever movement (Figs. 4 and 5) raised the
question as to the stability of the motor cortex network state dur-
ing motor learning and cortical reorganization. Among the
many possible states of cortical circuits (Beggs and Plenz 2003;
Harris and Thiele 2011; Holcman and Tsodyks 2006), evidence
for the critical network state in cerebral cortex has proliferated
in recent years (Muñoz 2018; Tomen et al. 2019; Wilting and
Priesemann 2019). Qualitatively, the critical network state

resides at the boundary between weakly and strongly coordi-
nated population activity corresponding to concurrent phases of
disorder and order, respectively. Quantitative tests of the critical
network state include scale-freeness of neuronal avalanches and
the scaling relationships between the measured exponents
(Friedman et al. 2012; Marshall et al. 2016). Within this concep-
tual framework, neuronal avalanches are bouts of elevated net-
work activity, revealing correlations across neurons and time
(Orlandi et al. 2013). Here we investigated whether such finger-
prints for the critical network state existed in the population ac-
tivity of L2/3 and L5 of M1 and M2 during motor learning.
For each recorded neuron, we thresholded the ISP at 3 SDs

(SD determined from the inferred spike probabilities of the
entire population in each session) and thus binarized the ISP of
each neuron into a binary activity time series (Fig. 6A). From
the sum of the binarized ISP values across neurons, we obtained
the “network activity” in a time bin. Based on the network activ-
ity, we defined a neuronal avalanche by introducing a threshold
at the 35th percentile of network activity (Hartley et al. 2014;
Johnson et al. 2019; Karimipanah et al. 2017a; Larremore et al.
2014; Poil et al. 2008, 2012). An avalanche starts when the net-
work activity crosses the threshold from below and ends when
the network activity crosses the threshold from above. We quan-
tified each neuronal avalanche by its size S, i.e., the integrated
network activity between threshold crossings, and its duration
D, i.e., the time between threshold crossings.
Avalanches for L2/3 population activity of M1 and M2 were

diverse in spatiotemporal scale. Specifically, both avalanche
size and duration distributions were consistent with power laws,
P(S)�S�s and P(D)�D�a (Fig. 6B). The closeness of the
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avalanche distributions to power laws was evaluated using
rigorous statistical criteria (METHODS). We validated the
power law fitting method by using simulated data from a PIF
model [METHODS, Supplemental Fig. S5 (https://figshare.com/
s/9245c5019517cf3912ec)]. The choice of single neuron sig-
nal threshold and network activity threshold within a certain
range returned robust results [METHODS, Supplemental Fig. S6
(https://figshare.com/s/9245c5019517cf3912ec)]. Importantly,
recorded population activities resulted in robust power-law ava-
lanche distributions across all 14 sessions [Fig. 6C: same ani-
mal as Fig. 6B, Supplemental Fig. S7 (https://figshare.com/s/
9245c5019517cf3912ec)]. Interestingly, the exponent values
covered a broad range (Fig. 6, D and E). Such range of exponent
values and the apparent linear relationship between size and dura-
tion exponents coincides with earlier experimental observations

(Beggs and Plenz 2003; Fontenele et al. 2019; Hahn et al. 2010;
Johnson et al. 2019; Priesemann et al. 2013; Shew et al. 2015).
For completeness, we note that exponent values did not change
with the progression of recording sessions and did not vary with
the number of recorded neurons [Supplemental Fig. S8 (https://
figshare.com/s/9245c5019517cf3912ec)].
To evaluate the potential deviation of avalanche size distribu-

tions from power laws across sessions, we used the previously
developed statistical measure κ (Shew et al. 2009, 2011). In
brief, we fitted a power law and the corresponding exponent s to
an empirical avalanche size distribution and then generated a
surrogate (theoretical) avalanche size distribution. The statistical
construct κ measures the difference between the two distribu-
tions (METHODS). By its definition, κ�1 indicates a good match
between the empirical distribution and the theoretical power law
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distribution. For all mice tested, L2/3 avalanche size distribu-
tions followed power laws across all 14 sessions as indicated by
stable κ values near 1 (Fig. 6, F andG).
Power laws provide necessary but not sufficient evidence for

critical dynamics (Stumpf and Porter 2012). Additional tests are
needed to determine whether criticality underlies the experi-
mentally observed power laws. Two such tests arise from a par-
ticular relationship between the size and duration of avalanches,
which is predicted to occur at criticality (Friedman et al. 2012;
Scarpetta et al. 2018; Sethna et al. 2001). First, the average ava-
lanche size scales with duration according to hSi�Dbfit . Second,
the exponent b is not independent, but rather depends on the
exponents s and a according to bpred ¼ a–1

s–1. Our experiments
confirmed both these predictions from the scaling relation for all
sessions. Average avalanche size scaled with duration according
to a power law hSi�Dbfit (Fig. 7A) and the observed values of s
and a provided a prediction exponent bpred ¼ a–1

s–1 of the fitted
exponent bpred for all 14 sessions (Fig. 7, B and C). Most of the

differences between bpred and bfit are smaller than 0.2 (within
the shaded area). As tested by a RNN model in (Ma et al. 2019),
a difference of less than 0.2 is a useful criterion for the critical
network state. The exponent b is itself meaningful; it quantifies
how quickly an avalanche “fans out.” For instance, if b is pre-
cisely 1.0, avalanche size increases linearly with duration.
Emerging data suggest that a wide variety of species and prepara-
tions generate scaling exponent b values of �1.2 (Fontenele et
al. 2019). Our recorded L2/3 population activity revealed a stable
b for all 14 sessions which was close to 1.2 (Fig. 7,D and E).
A related test for critical dynamics arises from the “shape col-

lapse,” i.e., the scaled avalanche profiles follow the same shape
for all durations (Friedman et al. 2012; Marshall et al. 2016;
Sethna et al. 2001). The L2/3 avalanche temporal profiles
increased and decreased in size in a largely stereotypical man-
ner. Avalanches exhibited shape collapse over an expansive set
of durations. In other words, avalanches all had a similar “hump
shape” no matter how long they lasted (Fig. 7F) and this was
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structed using the thresholded spike probability. Each row represents single neuron, and each mark represents the inferred spiking activity of that neuron, i.e., the
thresholded spike probability with value 1 (active). Bottom: “Network activity” (black) is the sum of all spiking neurons. A threshold (dashed red line) at median net-
work activity defines the start and end of a “neuronal avalanche” as the time points of crossing this threshold. The avalanche size (S, yellow) is the integrated network
activity for the avalanche duration (D), i.e., the time between threshold crossings. B and C: probability density functions (PDF, purple dots) of avalanche sizes and
durations for M1 L2/3 in session 1 (B) and M1 L2/3 in session 14 (from same animal) (C) followed power laws with exponent s for size and a for duration distribu-
tion. Purple dots are distributions based on empirical data, only filled dots were fitted to power laws (black lines). We shuffled spikes for each neuron separately and
got the distribution for shuffled spikes (dashed gray line) for comparison. D and E: exponents for avalanche size (s) and duration (a) distributions of all subjects and
sessions for M1 L2/3 (D) and M2 L2/3 (E). The gray scale of the symbols decreases from dark to light with increasing session number. F and G: The network state
quantified by κ (size distribution only). When κ is close to 1, the distribution is close to power law, otherwise, it’s not. Here the κ for M1 L2/3 (F) and M2 L2/3 (G)
are close to 1. For clarity of visualization of the many overlapping points for each session, we jittered the points laterally.
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significantly different for shuffled data (Fig. 7G). In more quan-
titative terms, scaled avalanches across a range of durations
showed little error (variance) around the polynomial fit (Fig. 7,
H and I). Most of the variance-based errors of L2/3 are below
0.01, while errors of the shuffled data are 0.022 ± 0.006 (mean ±
SD). The t test of all experimental and shuffled pairs suggested
significant difference (P < 0.05). These tests establish that L2/3
networks in M1 and M2 consistently operate near criticality
throughout learning.
In contrast to L2/3, L5 population activity in M1 and M2

displayed relatively fewer large avalanches; avalanche distri-
butions were typically small scale and not consistent with
power laws [Fig. 8A, Supplemental Fig. S9 (https://figshare.
com/s/9245c5019517cf3912ec)]. When forcing a power law
fit to the avalanche size and duration distributions (METHODS),
the deviations of the avalanche distributions from power laws
remained stable across all 14 sessions (Fig. 8B). As expected,
the resulting exponent values for s and a failed to provide a
prediction for the scaling exponent b (Fig. 8, A and B). For all
mice tested, L5 avalanche size distributions largely deviated
from power laws across most of the 14 sessions as indicated
by κ values below 1 (Fig. 8, C and D). Avalanche profiles
failed to map onto one shape (Fig. 8E). In more quantitative
terms, scaled avalanches across a range of durations showed
relatively larger error around the polynomial fit (Fig. 8, F and
G). The errors of L5 networks were significantly larger than

those of L2/3 for both M1 (P = 2.5434e�15) and M2 (P =
2.0207e�12) and were not significantly different from shuffled
data (P > 0.05 for 21 experimental and shuffled session pairs
out of 28 sessions). These results indicate that, as opposed to
L2/3, L5 networks in both M1 and M2 operate away from
criticality throughout learning.
Complementary to the avalanche analysis, we evaluated net-

work state by employing the “branching ratio” (Wilting and
Priesemann 2018). The branching ratio is the expected number
of neurons activated by one neuron in the previous time step
(see METHODS). Importantly, the branching ratio approach does
not employ the avalanches construct. A network operating at the
critical point will have a branching ratio near 1.0. For L2/3 neu-
rons, branching ratio values were near 1, whereas branching ra-
tio values for L5 neurons were significantly lower [Supplemental
Fig. S10 (https://figshare.com/s/9245c5019517cf3912ec)].

DISCUSSION

Our results indicate that cortical L2/3 circuits operate near the
critical network state during learning, while L5 circuits operate
away from criticality throughout learning. Specifically, the
observations of power laws, scaling relations, shape collapse,
and branching ratio together provide strong evidence that the
inspected L2/3 cortical microcircuits of mouse M1 and M2
remain stable near the critical network state throughout motor
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learning, whereas L5 population activity continue to operate
away from the critical network state.

Dynamic Cortical Representations During Motor Learning

How motor neuronal activity correlates with movement is
an essential and open question in neuroscience (Moran and
Schwartz 1999; Mussa-Ivaldi 1988; Schwartz 1994). Previous
investigations of this question have largely focused on electrical
recordings of neural activity, such as single unit activity (SUA)
(Paninski et al. 2004), local field potential (LFP) (Mehring et al.
2003), electrocorticogram (ECoG) (Pistohl et al. 2008), and intra-
cranial EEG (iEEG) (Hammer et al. 2016). Two-photon calcium
imaging 1) yields signals from a large number of neurons simulta-
neously and 2) monitors spiking activity from the same group of
neurons during different stages of motor learning across several
days. So it serves as a useful complementary tool for the investi-
gation of motor learning (Huber et al. 2012; Komiyama et al.
2010; Masamizu et al. 2014; Peters et al. 2014, 2017a). With
two-photon calcium imaging recording, our study is focused on
both single neuron and neural population dynamics.
We investigated the heterogeneity of neurons. Heterogeneity

in neural system (Chelaru and Dragoi 2008; Golomb and Rinzel

1993; Mejias and Longtin 2012; White et al. 1998), especially
the heterogeneity of motor cortex neural activity and its relation
to movement, has long been discussed (Churchland and Shenoy
2007; Rokni et al. 2007). Here, we combined motor learning
with heterogeneity study.
The present work confirms the restructuring of neural activity

during motor learning (Makino et al. 2017; Peters et al. 2014,
2017a) (Fig. 3) and demonstrates the concurrent reorganization
of the relation between neural activity and movement (Figs. 3
and 4).

Neural circuits are known to undergo significant remodeling
over multiple timescales, even in the absence of behavioral
training (Chambers and Rumpel 2017; Clopath et al. 2017), pos-
sibly leading to a massive, but dynamically balanced, remodel-
ing of excitatory and inhibitory synaptic networks on the time
scale of weeks (Attardo et al. 2015; Villa et al. 2016). Such sub-
stantial synaptic restructuring may imply that a given behavior
can be realized by multiple configurations of synaptic strengths
and that such wandering among synaptic configurations with
equivalent behaviors, but different neural representations, may
be advantageous for learning (Rokni et al. 2007). The theme of
dynamic circuit remodeling is not limited to the encoding of
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motor outputs (Carmena et al. 2005; Flint et al. 2016; Masamizu
et al. 2014; Peters et al. 2014), but also resurfaces in the encod-
ing of sensory stimuli during learning (Huber et al. 2012) or sen-
sory deprivation (Margolis et al. 2012) and the dynamic neural
coding of place in hippocampus (Ziv et al. 2013).
The observation of the fluid representation of different

aspects of the lever movement during learning raises an impor-
tant question (Fig. 5). Does the flexible neural code for position
and velocity underlying lever movement control determine
which new movements are easier to learn than others (Sing et al.
2009)? Neural elements of motor control often encode informa-
tion about limb position and velocity (Ashe and Georgopoulos
1994; Paninski et al. 2004). Here, we quantified the dynamic na-
ture of this neural representation of position and velocity/speed
across recording sessions (Fig. 5). Such representational flexibil-
ity, mediated by mixed task selectivity (Yang et al. 2019), is
likely to be crucial for the learning of new movements
(Bathellier et al. 2013; Rokni et al. 2007). Much future experi-
mental work will be needed to test such hypothesized relation
between the fluidity of representation and the ease of learning.

Stability of Network State Near Criticality

The present work provides a missing link between the reor-
ganization of neural circuits during learning (Fig. 3–5) and the
stability of the network state (Chambers and Rumpel 2017;
Rokni et al. 2007), by focusing on the network state with respect
to criticality (Fig. 6–8).
What is the critical network state (Fig. 1C) and why is it rele-

vant? Network dynamics is an emergent property of neuronal
interaction. This dynamic property determines the computational
regime of a network. In general, cortical circuits are often
assumed to 1) be “balanced,” such that runaway gain does not
drive the network toward saturation or silence, 2) encode and
transmit information across a wide range of spatial and temporal
scales, 3) have a broad dynamic range, and 4) be capable of proc-
essing complex information. Such circuit properties arise out of a
specific nonequilibrium regime of population dynamics often
referred to as “criticality.” This critical regime of network dynam-
ics has been proposed as a possible set point for certain cortical
circuits (Bertschinger and Natschläger 2004; Karimipanah et al.
2017a; Priesemann et al. 2014; Shew et al. 2015). Qualitatively,
the critical network state arises at the boundary between strongly
and weakly coordinated population activity. These correspond to
phases of order (strongly coupled) and disorder, respectively. A
long-standing hypothesis at the interface of physics and neuro-
science is that neural circuits in cerebral cortex operate near the
dynamical critical network state (Herz and Hopfield 1995;
Stassinopoulos and Bak 1995), thereby maximizing aspects of
sensory information processing (Shew and Plenz 2013; Tomen et
al. 2019). This criticality hypothesis (Beggs 2008) is partially
supported by evidence for steady-state critical dynamics observed
in the neural system (Beggs and Plenz 2003; Friedman et al.
2012; Petermann et al. 2009).
However, the stability of the critical network state with

respect to “perturbations” and intrinsic changes has only begun
to be explored. Of such perturbations, the level of arousal, sus-
tained attention, or tonic alertness on the network state has gar-
nered much interest. Literatures show stability of network state
across many conditions. Recordings from cerebral cortex and
hippocampus of behaving rats indicate that signatures of

network criticality are stable across waking, slow-wave sleep,
and rapid-eye-movement sleep but collapse during anesthesia
(Ribeiro et al. 2010). Dense intracranial depth recordings in
humans reveal avalanche distributions closely following a
power law for each vigilance state, including slow-wave sleep,
wakefulness, and rapid eye movement sleep (Priesemann et al.
2013). Other studies focus on the influence of levels of con-
sciousness onto network states. Long-range temporal correla-
tions, which naturally emerge in the vicinity of a critical
network state, decline during sustained wakefulness in the
human brain (Meisel et al. 2017a) and in rat brains (Meisel et al.
2017b). Focused cognitive task in humans induces subcritical
dynamics (Fagerholm et al. 2015). States of consciousness
impact the network state (Lee et al. 2019). Specifically, the brain
network states deviate from criticality during anesthesia (Bellay
et al. 2015; Fagerholm et al. 2018; Fekete et al. 2018; Ribeiro et
al. 2010; Tagliazucchi et al. 2016). In the awake condition, the
network states vary with eye-open versus eye-closed conditions
(Hahn et al. 2017). In addition, task modulations of network
state at short time scale is also a hot topic. Cognitive tasks
impact the neural activity, but not the network state, in nonhu-
man primates (Yu et al. 2017). Sensory stimuli are known to
modulate neural activity, yet the network state with respect to
criticality remains largely unchanged (Arviv et al. 2015;
Karimipanah et al. 2017a). Such stability of network state at
short time scale can be mediated by sensory adaptation (Shew et
al. 2015). At the time scale of days, when cortical input is per-
turbed by visual deprivation, an established homeostatic chal-
lenge, cortical network states deviate from criticality and
subsequently return to the critical network state within 48 h,
thus establishing that criticality is a homeostatic set point of
complex activity in visual cortical circuits (Ma et al. 2019). At
the longer time scale of development, distributions of neuronal
avalanches and long-range temporal correlations remain stable
during the first year of life in human infant (Jannesari et al.
2020).
In the present work, we have advanced the study of the stabil-

ity of the network state near criticality toward the field of learn-
ing (Del Papa et al. 2017). Learning is qualitatively different in
its specificity of reorganization, compared with the above-dis-
cussed external perturbations (e.g., anesthesia), which are global
in nature. Such large-scale disturbances render a global response
in network state plausible, as both perturbation and response can
happen at the same global spatial scale. In contrast, learning a
new motor task implies specific and spatially localized changes
in the underlying neural activity (Figs. 1–5), mediated by
changes in the synaptic circuitry (Biane et al. 2019; Chen et al.
2015; Fu et al. 2012; Rioult-Pedotti et al. 2000; Xu et al. 2009;
Yang et al. 2009). Whether the massive synaptic and neuronal
reorganization during learning materialize within the constraint
of stable cortical circuit dynamics with respect to criticality was
until now unknown. Earlier observations at the microscopic
level indicated the possibility of some form of network-state
invariance during learning, as spine formation may be balanced
by spine eliminations (Harms et al. 2008; Xu et al. 2009; Yang
et al. 2009), synaptic potentiation may be balanced by synaptic
depression (Cohen and Castro-Alamancos 2005), and changes
in inhibition may be balanced by changes in E-to-I connectivity
(Donato et al. 2013). Here, through the concurrent 14-day obser-
vation of neural reorganization (Figs. 2–5) and the network state
(Figs. 6–8) during learning, we showed that motor cortex
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network states remain stable with respect to criticality. In other
words, L2/3 neural circuits of motor cortex hover around or
near the critical network state during the neural reorganization.
Thus, as shown previously in visual cortex (Ma et al. 2019), the
critical network state may be an attracting point of cortical cir-
cuits rather than a state at which it is always perfectly poised.
Preliminary evidence for layer-specific network states has been
discussed before (Gireesh and Plenz 2008), but those studies
were limited to local field potential recordings from somatosen-
sory cortex in urethane-anesthetized rats and brain slices. Such
layer specificity of network state could be motivated by differ-
ences in function. From this functional perspective, self-organ-
ized criticality may provide a unifying explanation for the large
variability of neural activity (Karimipanah et al. 2017a, 2017b;
Linkenkaer-Hansen 2003). This raises the question whether
operating away from criticality decreases the variability of neu-
ronal activity and thus may benefit the L5 system which serves
as descending output layer (Anderson et al. 2010; Brecht et al.
2013; Cramer et al. 2020; Weiler et al. 2008).
The discovery of the dynamical criticality constraint during

learning raises important new questions. First, what biophysical
mechanisms self-organize the network state in L2/3 near criticality
while the neural circuit reorganizes during learning? A number of
synaptic plasticity mechanisms can mediate self-organization to-
ward the critical network state (Levina et al. 2007, 2009). More
complex model investigations have been extended toward simple
sequence learning tasks (Del Papa et al. 2017) and to network state
homeostasis (Ma et al. 2019; Zierenberg et al. 2018). Significantly
more future work, experimental and computational, will be needed
to demonstrate the interplay of biophysical mechanisms mediating
the self-organization of the network state near criticality during
learning and the concurrent neural circuit reorganization. Second,
does network criticality optimize learning? Neuronal variability is
essential for learning (Bathellier et al. 2013; Rokni et al. 2007; van
Beers et al. 2004). On the other hand, robustness in biological net-
works is essential for reliable performance (Aldana et al. 2007;
Barkai and Leibler 1997). How then do biological systems balance
the need for both variability and robustness (Chambers and
Rumpel 2017)? This question is particularly pertinent for motor
learning and neural circuits (Golub et al. 2018; Peters et al. 2017b).
In this context, it is tantalizing to hypothesize that the critical net-
work state may provide L2/3 circuits with a balance between
robustness and flexibility that is optimized for learning (Muñoz
2018). Many future experiments will be needed to test this far-
reaching learning-at-criticality hypothesis.
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