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ABSTRACT: Conventional materials are reaching their limits in computation, sensing, and data storage capabilities,
ushered in by the end of Moore’s law, myriad sensing applications, and the continuing exponential rise in worldwide
data storage demand. Conventional materials are also limited by the controlled environments in which they must
operate, their high energy consumption, and their limited capacity to perform simultaneous, integrated sensing,
computation, and data storage and retrieval. In contrast, the human brain is capable of multimodal sensing, complex
computation, and both short- and long-term data storage simultaneously, with near instantaneous rate of recall,
seamless integration, and minimal energy consumption. Motivated by the brain and the need for revolutionary new
computing materials, we recently proposed the data-driven materials discovery framework, autonomous computing
materials. This framework aims to mimic the brain’s capabilities for integrated sensing, computation, and data
storage by programming excitonic, phononic, photonic, and dynamic structural nanoscale materials, without
attempting to mimic the unknown implementational details of the brain. If realized, such materials would offer
transformative opportunities for distributed, multimodal sensing, computation, and data storage in an integrated
manner in biological and other nonconventional environments, including interfacing with biological sensors and
computers such as the brain itself.

Conventional computing is founded on Boolean logic
gates implemented in silicon-based hardware devices,
which, after decades of research and development,

have emerged as the predominant computing materials
platform. However, the recent end of Moore’s law in 2016,1,2

the explosion of worldwide data usage ushered in by hand-held
and distributed devices, and emergent needs for new forms of
biologically compatible, integrated sensing, computing, and
data storage devices with minimal energy footprints call for
disruptive, radically new materials and substrates for sensing,
computing, and data storage.3

The world’s information is growing exponentially, from 10
ZB today to an upper estimated limit of 1 YB in 2030,4 with no
practical economical, energy-efficient materials solutions for
long-term archival data storage. This growth is driven by the
life sciences (genomics, proteomics, etc.); social media
(Facebook, Twitter, Instagram, etc.); climatology, ecology,
and cosmology; medicine and pathology; and finance, among

other leading and growing applications. Increasing computa-
tional demand goes hand-in-hand with increasing data, driven
by rapidly expanding applications of artificial intelligence and
machine learning in all areas of work and life.5 In addition,
sensing applications, from autonomous cars and drones to
wearables, require orders-of-magnitude improvements in
photonic, acoustic, and electronic spatial-temporal detection
and sensing capabilities in order to operate reliably and safely.
Finally, powerful computing and sensing capabilities that can
interface with multiple modalities including electronic,
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photonic, and phononic are needed both within living
organisms, with applications ranging from agriculture to
medical implants and wearables, and in resource-limited and
harsh environments.
The human brain has long stood as the hallmark example of

unprecedented natural computing, sensing, and storage
capabilities. Although numerous material modalities emulate
neuronal networks and neuronal properties,6 our ability to
perform large-scale recording of the spatial-temporal dynamics
of the brain in complex environments involving decision-based
learning through reward has only recently arisen. The brain’s
unique capabilities depend on the coordinated activity of
numerous neurons (∼100 billion in the human brain) that
form a complex network. Thus, simultaneous recording of large
neuronal populations is essential for understanding the
emergent relationships among neurons and how they work
together to perform their integrated sensing, computing, and
information storage and retrieval functions.7 These techniques
for recording brain activity in vivo offer opportunities to
understand principles of the brain’s operation, as well as to
encode neuronal network data, computing/decision making,
and sensing properties into diverse materials. At the same time,
control over material compositions, properties, and measure-
ment modalities offers opportunities to program neuronal
function, properties, and data into diverse frameworks,
including phononic silicon properties, excitonic DNA-
scaffolded quantum dot and fluorophore networks, and
dynamic nanoparticle (NP) structural networks, among other
examples (Figure 1).
Motivated by a five-day ideation workshop organized and

hosted by the National Science Foundation in 2019 called
Harnessing the Data Revolution, we established the overall
premise of autonomous computing materials (ACMs). We
hypothesized that state-of-the-art, large-scale neuronal record-
ing data sets could be leveraged to discover new means of
programming dynamic, hierarchical, spatial-temporal sensing,
computing, and data storage capabilities into programmable

nanoscale materials. As a 10-year vision for the field, we
postulated that these encoding principles could also be applied
to diverse, heterogeneous, and stochastic data sets ranging
from ecology to climatology, finance, etc., using a range of
dynamic, controllable material properties including photonic,
excitonic, phononic, magnonic, and structural properties,
among others.

Importantly, our application of biomimetic ACMs is distinct
from the well-established field of neuromorphic computing.8,9

There, synaptic structure is typically replicated or mapped onto
a silicon-based architecture or field-programmable neural
arrays.10 Increasingly, other materials are being considered
for the creation of networks that may be literal analogues of
synaptic networks in the context of transistor-based
architectures. Notwithstanding, that paradigm primarily aims
to reconstruct the von Neumann architecture, whereas in an
ACM, we are expressly trying to employ a neural computing
architecture. We posit the possibility of constructing self-
contained ACMs consisting only of complex materialse.g.,
DNA-based photonic and excitonic materials, engineered NPs
scaffolded within polymer network arrays, or silicon-based
phononic materialsthat enable autonomous computing
without reliance on, or connection with, the now standard
architectures of silicon-based transistors and with minimal
energy requirements.

Figure 1. Investigative framework for discovering autonomous computing materials, showing domain-specific opportunities and approaches
associated with neuroscience, data science, and materials science.

Motivated by a five-day ideation work-
shop organized and hosted by the
National Science Foundation in 2019
called Harnessing the Data Revolution,
we established the overall premise of
autonomous computing materials.
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NEURAL RECORDING TECHNIQUES

The human brain is arguably one of the most sophisticated
computational machines known, having evolved to achieve
high levels of capacity and accessibility of data storage, as well
as extreme versatility and flexibility in the type of computation
performed. Since the introduction of the neuron doctrine by
Santiago Ramon y Cajal in the late 19th century,11 researchers
have recognized that the brain consists of discrete units called
neurons that form complex circuits. The flexible connections
and coordinated activity of numerous neurons, approaching
100 billion in humans, enable functions such as perception,
cognition, and movement.
A typical approach aimed at understanding the relationship

between the brain’s activity and its function is to record the
activity of neurons in behaving animals. Due to technical
limitations, a traditional approach has been to insert a single
metal electrode in the brain to record the activity of one or a
few neurons at once. The low throughput of these experiments
has to date hindered our understanding of how numerous
neurons work together to mediate brain functions.
The past decade has seen a technical revolution in our ability

to record larger numbers of neurons. Techniques now include
electrophysiological recordings with high-density electrode
arrays1,2 and optical imaging. In particular, calcium imaging has
emerged as a powerful approach to record the activity of many
neurons simultaneously in an intact brain with minimal
invasiveness. With this technology, it is now possible for a
single study to include recordings from tens of thousands of
neurons,3 several orders of magnitude improvement compared
to more traditional approaches. Thanks to these new
approaches, a wealth of data representing ensemble brain
activity is beginning to accumulate. These data present
opportunities to uncover ensemble and emergent properties
of neural populations in the brain, to understand and,
potentially, to utilize fundamental operational principles of
the brain, as well as to mimic or to encode these principles into
nanoscale materials.
Despite these opportunities, traditional means of analyzing

neural data have largely focused on single-neuron activity, and
descriptions of population dynamics and their operational
principles are in their relative infancy. An important
opportunity is to leverage emerging data science techniques
to extract key features of high-dimensional brain activity.
In ACMs, these preceding properties are being explored in

diverse materials frameworks, including nanoscale photonic
and excitonic networks programmed using DNA nano-
technology, phononic systems programmed in silicon-based
materials, and dynamic structural networks of gold nano-
particles (Au NPs) and quantum dots interacting through
nucleic acid interactions (Figure 1). The overarching aim is to
realize novel materials frameworks that sense, compute, and
store information in an integrated manner, similar to the brain,
without relying on von Neumann architectures or literal
implementational details of synaptic connectivity, as leveraged
in the well-established field of neuromorphic engineering and
computing per se.

DNA-BASED PHOTONIC AND EXCITONIC MATERIALS

Light can be controlled using structured DNA-based nanoscale
materials in a variety of manners,12 including using Au NP two-
dimensional (2D) and three-dimensional (3D) organization
and structure to control Raman scattering, plasmonic field

enhancement,13,14 circular dichroism and optical rotatory
dispersion effects,15 light diffraction for visible color control
using crystalline structures with regular lattice spacings on the
100−600 nm scale,16,17 and organizing chromophores18−21

and quantum dots22 for exciton delocalization and transport on
the nanoscale to mimic light-harvesting systems.23 In
particular, scaffolded DNA origami24 offers unprecedented
nanoscale control over the asymmetric spatial positions of
arbitrary numbers of secondary molecules including quantum
dots and dyes to form discrete networks of interacting
excitonic and photonic components.23,25 Although spatial
chromophore organization has been utilized by plants and
bacteria to harness sunlight for chemical energy, it has only
recently begun to be explored in DNA-based materials to
program integrated sensing, information storage, and compu-
tation.18−21,26

With ACMs, we explore how the one-dimensional (1D), 2D,
and 3D nanoscale spatial organization of quantum dots, dyes,
and dye clusters can be used to mimic neuronal connectivity
and network properties to encode Boolean logic, sensing, and
decision making. As a starting point, FRET-based networks are
being used to emulate neuronal sensing, learning, and decision
making from the mouse brain, based on recordings from the
Komiyama lab (Figure 1).27 Because these DNA-based
quantum dot and dye networks evolve in their theoretical
underpinnings and their capabilities are implemented exper-
imentally, key questions we seek to explore include how to
extract complex behavior and learning from large-scale in vivo
neuronal recordings; how to encode behavior and learning
within these networks; how to program robustness and error
correction, which are hallmarks of the brain; how to integrate
multimodal sensing, recording, and computational abilities;
and how to facilitate these capabilities in an autonomous
manner that consumes minimal-to-no energy, while also
operating in nonconventional wet, physiological, and other
uncontrolled environments. In parallel, synergistic work, we are
using DNA as an information-coding polymer itself,28 with a
density that exceeds 1018 bits per cubic millimeter, random-
access capabilities,29−31 and a shelf life that can be extended to
millennia using silica encapsulation.32

DYNAMICAL NANOPARTICLE NETWORKS
In a complementary approach, we are exploring the use of
dynamic networks of NPs to mimic the brain. The neuronal
network paradigm involves a large number of nodes that are
linked together at varying distances. The degree of these nodes,
the connectivity, and the strength of the links can vary and, in
principle, be reinforced through a learning process. To mimic
this type of network with molecular materials, the nodes have
to be large enough to accommodate such variable and
reversible connectivity and the links need to accommodate
variable lengths. Engineered NPs (ENPs) can be made large
enough to provide a range of binding sites4,33,34 and can be
decorated to provide specificity.35−37 Meanwhile, polymers of
varying lengths can be used to provide physical binding to the
ENPs and the links between them (Figure 1).38

To store and to retrieve information, we postulate that we
can either use a relational array of the degree of connectivity of
a given set of nodes or be process-driven by encoding
information through its response to input signals. To compute,
such networked ENPs would then need to accommodate signal
transport, perhaps by replacing the linked polymers with ones
that conduct. The nodes would then conduct the signals

ACS Nano www.acsnano.org Perspective

https://dx.doi.org/10.1021/acsnano.0c09556
ACS Nano 2021, 15, 3586−3592

3588

www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.0c09556?ref=pdf


between the attached polymers as modulated by the extent of
their respective binding. Such binding may indeed be
enhanced or decreased by the strength of past signals
memoryand, thus, enable the network ENPs to be trained.
The processing of informationthat is, signalsthrough this
array would then need to be understood or designed using the
operating system of the neuron that we are teasing out of the
neural mouse model. This template offers a means by which an
ACM can be designed to mimic the underlying operating
system architecture of the brain, as opposed to a von Neumann
computer.
Key questions for the implementation of an ACM based on

an ENP network include the degree to which spatial-temporal
signals transport through the network and whether the signals
follow the same rules as seen in time-series neuronal signals.
To this end, we are using large data sets (comprising multiple
signals from many interconnected neurons over a long period
of time during which a mouse is subject to varying stimuli) to
design the basic connectivity and operations in the ENP
networks.

PHONONIC ENSEMBLES ENCODED IN
SILICON-BASED MATERIALS
Phonons, the quanta of lattice vibrations, play increasingly
important roles in information-processing applications both
directly and through interactions with electrons and photons.39

Control over phonons, therefore, has major implications in
microelectronics,40−44 renewable energy harvesting,45 opto-
electronics,46 and quantum technologies.47,48 In addition,
phonons couple distinct components in heterogeneous
systems, providing a natural platform for information storage
and transfer in computing materials. However, the roles of
phonons as information carriers are considerably less explored.
One reason is that phonons are bosons and, as a consequence,
a broad range of phonon frequencies are excited at room
temperature in condensed systems. The difficulty of working
with a broad spectrum naturally poses challenges in controlling
phonons.49 Recent advances in nanofabrication and character-
ization techniques demonstrated remarkable possibilities for
engineering phonon processes with nanostructuring.50 Pho-
nons in nanostructured materials reveal dramatic changes in
their dynamics due to confinement.51−53 With ACMs, we aim
to harness emergent phononic properties to create a new
paradigm for information storage and transfer, alternative to
conventional charge- or spin-based computing protocols.
Specifically, we hypothesize that the stimulus response of
phononic ensembles can be regulated to exhibit collective
dynamics, similar to neuronal activity encoded in neuro-
imaging data. Significant advances in the understanding of
structure−processing−property relationships between nano-
scale structures and phonon processes promise to help realize
such an engineered ensemble.
As a proof of concept, we are developing a computational

framework to characterize emergent phonon properties of
silicon-based nanoscale confined materials, such as in a
FinFET device (Figure 1). Whereas silicon-based structures
have been used for electronics and optoelectronics, there is
little knowledge available regarding their complex phononic
ensembles. The framework will potentially reveal new physics
such as the coexistence of particle- and wave-like phonon
phenomena. Some key questions we aim to answer are as
follows: Is there similarity between the stochastic nature of
large-scale neuronal data and quantized vibrations of

heterogeneous assemblies of nanoscale materials, and how
can we design materials with a targeted phononic environment
that exhibits the desired data structure properties to mimic
neuronal state transition behavior? Such a model will
potentially uncover new explorable design degrees of freedom
to control thermal environments in high-impact technological
applications.

BRIDGING NEURONAL COMPUTING WITH
NANOMATERIALS USING DATA-DRIVEN DISCOVERY
To bridge the gap from raw, digital neuronal data sets to
nanomaterial systems, close interaction is needed between
materials scientists, neuroscientists, and data scientists. Toward
this end, data analytics serves a critical, central role as models
of dynamic, spatial-temporal processes are captured and
mapped onto physical, materials systems. Although there are
advantages of physically mimicking the brain as performed in
neuromorphic computing, a distinguishing feature of the ACM
framework is that we are instead seeking to identify and to
create abstractions of the brain’s computing and storage
paradigms when it engages in complex tasks such as learning,
decision making, and sensing.
As an example, consider the abstraction provided by the

Turing Machine, which defines the notions of “computability”,
“encodability”, and “decidability”. Although this architecture is
simple and equivalent to a von Neumann architecture, it is also
sufficient to compute any “function”. Motivated by this
example, we posit that all complex phenomena can be
described in terms of canonical program that delineates the
minimal number of states and unambiguously describes the
transitions between them. This canonical program will be
learned from fully and partially observable phenomena
injecting an iota of uncertainty.
A practical analogy can be found when the canonical

program is realized as a field programmable gate array (FPGA)
of any form factor and material. This FPGA is embedded into
other systems, namely, ones that are excitonic/patchy NP/
phononic systems. The mapping is nontrivial and will require
the mapping of states and transitions to other physical systems.
In so doing, we are going beyond the manner in which
neuromorphic computing is typically practiced now, whereby
an entire “program” is emulated in a similar way on a different
system. Thus, instead of creating “lego-brains” and smart chips
that emulate them, our goal is to use other configurations, as
provided by nature. Further, the disconnect between the
computing and algorithmic substrates no longer exists. The
algorithm will now drive the embedded materials systems
directly. Toward this end, new rules of programming and
controlling the target materials systems are needed, which can
and likely will lead to new foundational discoveries in
computing (Figure 1).

With autonomous computing materi-
als, we aim to harness emergent
phononic properties to create a new
paradigm for information storage and
transfer, alternative to conventional
charge- or spin-based computing pro-
tocols.
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HARNESSING THE DATA REVOLUTION
In order to enable progress along the highly interdisciplinary
research lines outlined above that span neuroscience, data
science, and distinct areas of materials science, we propose
several recommendations for progress toward ACMs in our
collaborative framework (Figure 2). First, we should work

toward a common vernacular to facilitate communication
across diverse backgrounds and training. To achieve this
commonality, graduate students, postdocs, and faculty must
collaborate closely, bridging highly interdisciplinary spaces and
communicating across boundaries between traditional disci-
plines, in order to define and evolve a new language or
common vernacular for interdisciplinary materials and
computational science. Diversity should be encouraged in
student, staff, and faculty backgrounds, training, genders, and
ethnicities, to ensure creative and productive teams.54,55

Second, transferability across material systems is required, so
that discoveries and inventions made in one domain, such as
photonics and DNA-based materials, networked ENPs, or
phononics and silicon-based materials, may interchange
readily. As data-driven materials discovery frameworks are
explored, invented, and deployed, iteration between distinct
materials domains is needed to achieve transferability. In
addition, transferability must be maintained as an overarching
design principle of data-driven discovery approaches. Third,
applicability across distinct, large-scale, stochastic, heteroge-
neous data sets is required, not only from brain science but
also from climatology, ecology, biology, pathology, etc. Fourth,
industrial and government stake-holders, including the public,
must be identified in order to determine new data sets and
materials to which to transfer and to apply the preceding
methodologies and knowledge frameworks for the broadest
impact of the ACM framework on industries of the future.56

Regular workshops and reports, first launched by the National
Science Foundation in Washington, DC, in April of 2019 and
held again later in May 2020, and embodied in this
Perspective, are several such examples. Broader impacts on
the public, including technological interests and ethical
concerns, must be identified and communicated early and
clearly throughout the scientific discovery process: next-
generation sensing for safe and reliable autonomous vehicles,
heart and brain monitors for health and disease monitoring

and treatment, and ecological preservation to avert impacts of
global warming are examples of domains that stand to benefit
by transformations in our ability to compute autonomously in
diverse materials and environments, akin to the human brain.

EMERGENCE OF AUTONOMOUS COMPUTING
MATERIALS
We now have the ability to design materials with tunable
properties across a broad parameter space that is too large to
explore without deep learning techniques. We can begin to
access the spatial-temporal responses of a living brain to
determine how it processes and stores information. We
understand how to encode instructions into Turing machines
(and quantum computing architectures) in ways that enable us
to move toward the biomimetic architecture of the brain.
Placing these pieces together with the tools of the data science
revolution suggests the feasibility of designing novel materials
that can carry out computing tasks effected by the flow of
energy or electrons through them in much the same way that
data flows and processes in the brain through voltages and
chemical neurotransmitters. Such autonomous computing
holds promise for both the construction of large-scale high-
performance computing devices and small portable devices
capable of being integrated into fabrics and the environment.
Here, we have provided a preview of the underlying science of
these devices and the possible technologies that it will enable.
In a timely quote by R.S. Williams from Hewlett-Packard
Laboratories in 2017,3 “The end of Moore’s law may be the
best thing that has happened in computing since the beginning
of Moore’s law. Confronting the end of an epoch should
enable a new era of creativity by encouraging computer
scientists to invent new biologically inspired paradigms,
implemented on emerging architectures, with hybrid circuits
and systems that combine the best of scaled silicon CMOS
with new devices, physical interactions and materials.” Indeed,
autonomous computing materials respond to this challenge.
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