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SUMMARY

The posterior parietal cortex (PPC) performs many
functions, including decision making and movement
control. It remains unknown which input and output
pathways of PPC support different functions. We
addressed this issue in mice, focusing on PPC neu-
rons projecting to the dorsal striatum (PPC-STR)
and the posterior secondary motor cortex (PPC-
pM2). Projection-specific, retrograde labeling
showed that PPC-STR and PPC-pM2 represent
largely distinct subpopulations, with PPC-STR
receiving stronger inputs from association areas
and PPC-pM2 receiving stronger sensorimotor in-
puts. Two-photon calcium imaging during decision
making revealed that the PPC-STR population en-
codes history-dependent choice bias more strongly
than PPC-pM2 or general PPC populations. Further-
more, optogenetic inactivation of PPC-STR neurons
or their terminals in STR decreased history-depen-
dent bias, while inactivation of PPC-pM2 neurons
altered movement kinematics. Therefore, PPC
biases action selection through its STR projection
while controlling movements through PPC-pM2
neurons. PPC may support multiple functions
through parallel subpopulations, each with distinct
input-output connectivity.

INTRODUCTION

Life is made of decisions. Our decision making is often influ-

enced by our personal history. For example, reinforcement

learning is a process by which decision makers use their recent

history to estimate the outcomes of different action choices for

given stimuli to achieve optimal decision making (Sutton and

Barto, 1998; Lee et al., 2012). Intriguingly, history dependence

is prevalent even when the decision makers are informed of a

fixed, deterministic stimulus-action rule (e.g., ‘‘saccade to the

direction ofmoving dots’’), and thus there is no need to infer rules

from history (Fr€und et al., 2014; Abrahamyan et al., 2016; Braun

et al., 2018). In those conditions, idiosyncratic history depen-

dence becomes apparent when the stimuli are ambiguous, and

thus the sensory evidence is weak. This suggests that history-

dependent decision bias is always at work, and the extent of

its influence varies with the strength of sensory evidence.

Thus, although its utility and impact on choice vary with the na-

ture of decision problems, history-dependent bias is a funda-

mental and universal trait in decision making.

Recent studies found that the posterior parietal cortex (PPC) is

a critical locus of the neural circuit that is involved in history-

dependent bias of decision making (Hwang et al., 2017; Akrami

et al., 2018). They showed that a subset of PPC neurons encode

history-dependent bias and/or relevant history information, and

PPC inactivation weakens history-dependent bias. These find-

ings raise important questions pertaining to the neural circuit

mediating history-dependent bias: what brain areas send inputs

to PPC neurons that mediate history-dependent bias, and where

PPC sends this bias information to affect choices. However, we

cannot simply infer such information flows based on known anat-

omy, given that PPC is extensively interconnected with many

brain regions including sensory, motor, and other association

areas (Pandya and Seltzer, 1982; Cavada and Goldman-Rakic,

1989; Baizer et al., 1993; Lewis and Van Essen, 2000; Hovde

et al., 2019). Furthermore, PPC is involved in a diverse set of

functions, including decision making, motor control, attention,

object categorization, and working memory (Snyder et al.,

1997; Platt and Glimcher, 1999; Shadlen and Newsome, 2001;

Todd and Marois, 2004; Buschman and Miller, 2007; Freedman

and Assad, 2011; Harvey et al., 2012; Hwang et al., 2012; Ander-

sen et al., 2014; Raposo et al., 2014). Currently, it remains un-

known which input and output pathways of PPC contribute to

each of these functions.

In one extreme scenario, the various inputs to PPC may

converge indiscriminately onto all PPC projection neurons that

broadcast the same information to all downstream targets. In

the other extreme scenario, neurons within PPC may segregate

into distinct groups with distinct input-output connectivity and

functions, forming non-overlapping parallel pathways. The brain

appears to utilize both of these strategies (broadcasting versus
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parallel subsystems) in different systems. A recent study on

locus coeruleus noradrenergic neurons provided an example

for the first scenario (Schwarz et al., 2015). In contrast, a number

of other studies have shown some levels of pathway specificity.

Information encoded by neurons in a given area differs depend-

ing on their projection targets (Movshon and Newsome, 1996;

Chen et al., 2013; Glickfeld et al., 2013), and perturbation of

selective projection pathways can modify specific behavioral

phenotypes (Tye et al., 2011; Kim et al., 2013; Li et al., 2015;

Knowland et al., 2017; Murugan et al., 2017; Ren et al., 2018).

It is unknown to what extent PPC has parallel subsystems, and

which pathways carry out which functions.

Here, we probed these questions in order to delineate the

PPC circuit underlying history-dependent decision bias. We

focused on two major outputs of PPC, the dorsal striatum

(STR) and the posterior secondary motor cortex (pM2). We

selected these two areas as plausible downstream targets to

which PPC may send bias information, because they have

been implicated in action selection and preparation (Lauwer-

eyns et al., 2002; Pasupathy and Miller, 2005; Samejima

et al., 2005; Sul et al., 2011; Znamenskiy and Zador, 2013; Bar-

thas and Kwan, 2017). We compared PPC neurons projecting

to STR (PPC-STR) versus pM2 (PPC-pM2) in terms of their

anatomical connectivity, response properties, and involvement

during a decision-making task, using pathway-specific retro-

grade labeling, two-photon calcium imaging, and optogenetic

inactivation. We found that PPC neurons projecting to the

two targets form largely non-overlapping and parallel subpop-

ulations, and the subpopulations that project to STR and pM2

are selectively involved in biasing action selection and control-

ling movements, respectively.

RESULTS

PPC Neurons Projecting to STR and pM2 Represent
Largely Distinct Subpopulations
We recently established a behavioral paradigm in which the ac-

tion selection of mice is biased by idiosyncratic use of their

choice-outcome history. We showed that a subset of PPC neu-

rons encode the bias information during the inter-trial interval

(ITI) that predicts their subsequent action choice, and inactiva-

tion of PPC during the ITI weakens history-dependent bias. Curi-

ously, however, PPC inactivation during the choice period had

no impact on the bias (Hwang et al., 2017). These results sug-

gested that the bias information encoded in PPC during the ITI

is transferred to a downstream region where it is used during

choice to bias action selection. Here, we sought to identify this

flow of bias information from PPC.

To examine the output connectivity of PPC, we performed

anterograde tracing by injecting AAV-CAG-tdTomato in PPC

unilaterally and examined its axonal projections. We found

PPC projections in several brain areas, including pM2 and dorsal

STR (Figures 1A and 1B), as well as primary somatosensory cor-

tex, associative thalamus, auditory cortex, visual cortex, and su-

perior colliculus, consistent with previous reports (Harvey et al.,

2012; Hovde et al., 2019). The projections were largely ipsilateral

to the injection site. Of these downstream areas, we focused on

STR and pM2 as plausible targets to which PPC sends action

bias information, as the dorsal STR and pM2 have been repeat-

edly implicated in stimulus- and history-dependent decision

making (Lauwereyns et al., 2002; Pasupathy and Miller, 2005;

Samejima et al., 2005; Sul et al., 2011; Tai et al., 2012; Znamen-

skiy and Zador, 2013; Hanks et al., 2015; Barthas and

Kwan, 2017).

Next, we examined whether the PPC projections to STR and

pM2 originate from the same PPC neurons sending collaterals

to both areas, or from non-overlapping subpopulations of PPC

neurons, projecting to either STR or pM2 but not both. To

address this question, we injected two different fluorescent

retrograde tracers in each of the two targets in the same an-

imal (Figure 1C; STAR Methods), which were taken up by

axon terminals and retrogradely labeled PPC neurons (Fig-

ure 1D). The injections were targeted to the locations of dense

axonal projections in the aforementioned anterograde tracing

experiment (STAR Methods). In one set of mice (n = 6), we

unilaterally injected glycoprotein-deleted rabies virus encod-

ing GFP (RVDG-GFP) in STR and RVDG-tdTomato in pM2 of

the same animal. In the other set (n = 3), we unilaterally in-

jected cholera toxin subunit b (CTB) conjugated with Alexa

Fluor 594 in STR, and CTB-Alexa Fluor 488 in pM2. The

somas of many PPC neurons were clearly labeled (Figure 1D).

In mice injected with RVDG, we quantified retrogradely

labeled neurons in PPC of both hemispheres and found a

vast majority of labeled neurons in the hemisphere ipsilateral

to the injection site. The contralateral PPC contained only

2% ± 1% (mean ± SEM across 6 mice) of all retrogradely

labeled PPC neurons from STR injections and 4% ± 1%

from pM2 injections. Thus, the following analyses were per-

formed only in the ipsilateral PPC.

We next examined the distributions of PPC neurons projecting

to STR (PPC-STR) versus pM2 (PPC-pM2). We generally found

more PPC-STR than PPC-pM2 neurons (Figure 1E). Further-

more, the two groups of PPC projection neurons showed differ-

ential spatial distributions both vertically and horizontally. To

quantify the spatial distributions of labeled neurons, we con-

structed a relative density histogram of labeled neurons in three

separate axes; dorsoventral depth from the dura, mediolateral

distance from the midline, and anteroposterior distance from

bregma, for each mouse. Then, we averaged the histograms

acrossmice. As the two sets of tracers (CTB andRVDG) revealed

similar spatial distributions, we present combined data from the

two tracers. Overall, we found a significant overlap in the spatial

distributions of the two projection populations within PPC (Fig-

ure 1F). However, the two distributions were slightly offset from

each other in all three axes; PPC-pM2 neurons tend to be

located more superficially, laterally, and posteriorly compared

to PPC-STR neurons (Figure 1F).

The different spatial distributions suggest that the two pro-

jections arise from at least partially distinct subpopulations in

PPC. However, it still remains possible that some PPC neurons

send axons to both STR and pM2. To characterize the degree

of overlap between the two projections, we quantified the frac-

tion of PPC neurons that were double-labeled by both STR and

pM2 injections. In mice injected with RVDG, we found that only

0.6% ± 0.3% (mean ± SEM across 6 mice) of all labeled PPC

neurons expressed both fluorescent proteins. In mice injected
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with CTBs, 3.5% ± 0.1% (mean ± SEM across 3 mice) of all

labeled PPC neurons were labeled by both fluorophores (Fig-

ure 1G). The number of CTB double-labeled neurons corre-

sponds to 5.5% ± 1.6% of neurons labeled by CTB injected

in STR (i.e., PPC-STR) and 9.2% ± 2.2% of neurons labeled

by CTB injected in pM2 (i.e., PPC-pM2). The low frequency

of double-labeled neurons suggests that PPC-STR and PPC-

pM2 neurons represent largely distinct subpopulations. How-

ever, we note that the two-color retrograde labeling, each

with an incomplete efficiency, is likely an underestimate of

the true fraction of neurons that project to both target areas.

Nevertheless, together with the distinct spatial distributions,

the results suggest that PPC-STR neurons and PPC-pM2 neu-

rons are largely non-overlapping.

PPC Neurons Projecting to STR and pM2 Receive
Distinct Long-Range Inputs
Given that we have identified two largely distinct subpopula-

tions of PPC projection neurons, we considered the possibility

that these PPC subpopulations receive distinct patterns of

A B

C D
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G

n n

Figure 1. PPC Neurons Projecting to STR (PPC-STR) and pM2 (PPC-pM2) Represent Largely Distinct Subpopulations

(A and B) Anterograde labeling of PPC projections in STR (A) and pM2 (B). Left: drawing of the right hemisphere. Right: fluorescence image of axons of PPC

projection neurons in the boxed area. The anterior-posterior distance from bregma to each coronal section is indicated at the bottom. STR, dorsal striatum; pM2,

posterior secondary motor cortex.

(C) Two-target retrograde labeling. In one set of mice (n = 3), CTB-redwas injected in STR, and CTB-green was injected in pM2. In the other set (n = 6), RVDG-GFP

was injected in STR, and RVDG-tdTomato was injected in pM2.

(D) A coronal brain section showing PPC neurons labeled by retrograde CTB injected in STR (red) and pM2 (green). Magnified images are from three regions (blue,

black, and orange boxes) in PPC. Double-positive cells are rare. The green signal in the black box is mostly from axons.

(E) Density of neurons labeled by retrograde tracers injected in STR versus pM2. Red dotted lines, 3 mice injected with CTBs; gray dotted lines, 6 mice injected

with RVDG; thick line, mean ± SEM across 9 mice; BPS test.

(F) Relative density histograms of retrogradely labeled neurons (mean ± SEM across 9mice) in PPC along the cortical depth, mediolateral distance to the midline,

and anteroposterior distance to bregma. Orange: retrograde tracers injected in STR. Blue: retrograde tracers injected in pM2. BPS test on the spatial centers (i.e.,

average positions) between the two projection groups. PPC-STR and PPC-pM2 neurons are differentially distributed within PPC.

(G) PPC neurons projecting to both STR and pM2 are uncommon. Left: total number of neurons labeled by only CTB-red injected in STR, only CTB-green injected

in pM2, and both CTBs. The number of neurons labeled by both CTBs is 122 ± 32 (mean ± SEM across 3 mice). Right: fraction of neurons labeled by both CTBs

(i.e., projecting to both STR and pM2) relative to CTB-red, CTB-green, and all labeled neurons. Circles, individual mice; black lines, mean ± SEM across 3 mice.
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long-range inputs, which could contribute to potential differ-

ences in their activity and functions. Thus, we characterized

long-range inputs to PPC-STR and PPC-pM2 neurons

using projection-specific, retrograde monosynaptic labeling

(Schwarz et al., 2015; Knowland et al., 2017). Briefly, we first

injected a Cre-encoding retrograde canine adenovirus (CAV-

Cre) in one of the two targets and a mixture of helper viruses

(AAV-DIO-mRuby2-P2A-TVA and AAV-DIO-RVG) in PPC

unilaterally. This strategy restricts helper virus expression

to the specific subset of PPC neurons that project to either

STR or pM2: starter neurons. Three weeks after these first

injections, we injected EnvA-pseudotyped, glycoprotein-

deleted rabies virus (EnvA-RVDG-eGFP) in PPC (Figure 2A;

n = 5 mice for each target; STAR Methods). This rabies virus

variant can infect only starter neurons, where trans-comple-

mentation enables it to trans-synaptically infect their pre-syn-

aptic neurons (Wickersham et al., 2007). Similar to the pattern

of long-range inputs to the general PPC population (Harvey

et al., 2012; Hovde et al., 2019), we found inputs to each pro-

jection group from numerous cortical areas and associative

thalamic nuclei, mostly in the ipsilateral hemisphere of the in-

jections. The number of contralateral inputs corresponds to

6% ± 1% (mean ± SEM across 10 mice) of total inputs, and

the fraction of contralateral inputs did not significantly differ

between the two projection groups (bootstrap two-sample

[BTS] test, p = 0.6). We focused our analysis on inputs from

19 dorsal cortical areas in the hemisphere ipsilateral to the in-

jections. These areas include somatosensory, visual, cingu-

late, retrosplenial, and motor cortical areas and the 19 areas

together comprised 77% ± 3% (mean ± SEM across

10 mice; STAR Methods) of total input neurons. While both

projection groups received inputs from all of these areas,

the relative proportions of inputs from these areas were differ-

ently distributed between the two projection groups (Figures

2B and 2C). PPC-pM2 neurons received more inputs from

the primary motor cortex and the primary somatosensory up-

per-body regions (i.e., forelimb, trunk, shoulder, and neck re-

gions) than PPC-STR neurons (BTS test, p < 0.0001 and p <

0.001, respectively; Figure 2D). In contrast, PPC-STR neurons

received more inputs from the cingulate areas, i.e., cingulate

cortex areas 1 and 2, and the cingulate/retrosplenial complex

(transitional zone between cingulate and retrosplenial cortex)

than PPC-pM2 neurons (BTS test, p < 0.0005; Figure 2D).

Therefore, the distinct subpopulations of PPC neurons, each

projecting to STR or pM2, receive different distributions of

long-range cortical inputs. Sensorimotor inputs appear en-

riched in PPC-pM2 neurons, while association inputs are

more prevalent in PPC-STR neurons.

History-Dependent Bias Is Preferentially Encoded by
PPC Neurons Projecting to STR
The results that PPC-STR and PPC-pM2 neurons are largely

non-overlapping and receive distinct input patterns suggest

that the two projection pathways may form parallel subsystems

with distinct functions. Specifically, we asked whether the PPC

function of mediating history-dependent action bias preferen-

tially involves one of these subpopulations. To address this

issue, we first examined information encoded by the two sub-

populations of PPC projection neurons during a decision-making

task (Figure 3A).

In this task (Hwang et al., 2017), mice were presented with one

of two visual stimuli (forward or downward drifting gratings) for

1 s in each trial. Two seconds after the stimulus offset, an audi-

tory go cue indicated that mice must press the joystick in the

same direction as the visual stimulus presented earlier, to

receive a water reward. We previously found that a significant

portion of choice variability in this task was explained by

choice-outcome history-dependent bias (Hwang et al., 2017).

Following our previous methods, we quantified choice-outcome

history dependence in this task bymodeling the choice behavior.

Briefly, we built a logistic regression model in which the probabil-

ity to choose one of the two alternatives on a given trial (N) is a

function of the current trial stimulus, choice-outcome history,

and a constant bias (full model, Equation 1), and we fit the

A B

D

C

(n=5)
(n=5)

Figure 2. PPC-STR and PPC-pM2 Neurons

Receive Distinct Distributions of Long-

Range Cortical Inputs

(A) Schematic of projection-specific, retrograde

monosynaptic tracing.

(B) A coronal section showing long-range cortical

inputs to PPC-STR neurons. The anterior-poste-

rior distance from bregma is indicated on the

bottom-left corner. Cg/RS, cingulate/retrosplenial

complex (transitional zone posterior to cingulate

and anterior to retrosplenial cortex); M2, second-

ary motor cortex; M1, primary motor cortex; S1HL,

primary somatosensory cortex hindlimb region;

S1FL, primary somatosensory cortex forelimb

region.

(C) A coronal section showing long-range cortical

inputs to PPC-pM2 neurons.

(D) Quantification of dorsal cortical inputs to PPC-

STR versus PPC-pM2 neurons (n = 5 mice each).

The y axis represents the percentage of inputs,

normalized to the total inputs in each mouse.

Mean ± SEM across 5 mice. BTS test.
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weights of this logistic regression model in each session based

on the choice pattern (STAR Methods).

Each term in the model can account for distinct behavioral

strategies/tendencies. For instance, a positive ws would

reproduce a tendency for the animal to use the correct stim-

ulus-response rule. wo would be positive if the animal tends

to choose ‘‘forward’’ after rewarded trials but ‘‘downward’’ af-

ter failed trials. wc would be negative if the animal tends to

choose the less chosen option in the recent history. A positive

woc would indicate a tendency that the animal repeats the re-

warded choices independent of the stimulus (e.g., a win-stay/

lose-switch strategy). The relative strength of each tendency

in the animal’s choices would be reflected on the amplitude

of their corresponding weight. We used exponential decay

for each of the history terms based on a pilot analysis, which

showed that the effects of history from previous trials decay in

an approximately exponential manner (data not shown). In

general, the behavioral data in the current study (51 sessions

across 13 mice) replicated the main findings in our previous

publication (Hwang et al., 2017). First, the outcome history

has the strongest effect on choices in a majority of sessions

(28/51). Second, the effect of the outcome history is domi-

nated by N-1 trial with a short time constant (0.6 ± 0.2 trials;

median ± SE across 51 sessions). Third, the choice history

has a significantly negative weight (�0.3 ± 0.06; mean ±

SEM; bootstrap paired-sample [BPS] test, p < 0.0001) with a

longer time constant (17 ± 8 trials; median ± SE) than the

outcome history.

This ‘‘full model’’ predicted the animals’ choice in a cross-vali-

dated condition significantly better than the ‘‘stimulus model’’

(Equation 2) that uses only the stimulus and constant (BPS

test, p < 0.0001; Figure 3B).

log
pfchoiceðNÞ= forwardg

pfchoiceðNÞ=downwardg = ws$ stimulusðNÞ+ constant

(Equation 2)

The higher performance of the full model with the history terms

was also confirmed by the Akaike information criterion (AIC) that

penalizes an increase in the number of parameters, with

significantly better (smaller) AIC for the full model (BPS test,

p < 0.0001; Figure 3C). Each mouse performed multiple ses-

sions, so we also examined the average model performance

and AIC for each mouse and observed the same trend (Figures

3B and 3C).

This model has two important implications. First, the result

confirms significant dependence on choice-outcome history in

the two-choice joystick task. Second, by fitting the full model

to the observed choices, we could estimate the continuously

varying history-dependent bias on a trial-by-trial basis, which

is a variable internal to the mouse and not directly measurable.

More specifically, once the weights of the full model are

identified from fitting, the portion of the full model excluding

the stimulus term (Equation 3) could provide an estimate of his-

tory-dependent bias in each trial. This estimate of choice-

outcome history-dependent bias will be referred to as ‘‘history

bias’’ hereafter. In the following experiments, we sought to iden-

tify neural correlates of this history bias in PPC.

To record the activity of specific projection neurons and

compare it to the activity of other PPC neurons, we combined

retrograde labeling (described later) and two-photon calcium im-

aging in transgenic mice (CaMK2a-tTA::tetO-GCaMP6s or

CaMK2a-tTA::tetO-GcaMP6s::Rosa-CAG-LSL-tdTom) in which

cortical excitatory neurons express GCaMP6s (STAR Methods).

Our previous study (Hwang et al., 2017) demonstrated that the

general population of PPC neurons reflects history bias for the

upcoming choice during the ITI. Consistent with this previous

finding, we found that 24% ± 2% (mean ± SEM across 51 PPC

fields in 13 mice, 1 session/field) of all imaged PPC neurons ex-

hibited significantly different activity during the ITI depending on

the upcoming choice (i.e., N-choice tuning; Figure 3D), suggest-

ing that these neurons reflect the internal bias that influences the

upcoming choice. In addition, a weighted sum of ITI activity

across PPC neurons in each trial could well reflect the history

log
pfchoiceðNÞ= forwardg

pfchoiceðNÞ=downwardg=ws$stimulusðNÞ+wo $
XN�1

k = 1

outcomeðkÞ$e�N�1�k
to

+wc$
XN�1

k = 1

choiceðkÞ$e�N�1�k
tc +woc$

XN�1

k =1

outcomeðkÞ$choiceðkÞ$e�N�1�k
toc + constant

(Equation 1)

History biasðNÞ = wo$
XN�1

k = 1

outcomeðkÞ$e�N�1�k
to + wc$

XN�1

k = 1

choiceðkÞ$e�N�1�k
tc +woc$

XN�1

k = 1

outcomeðkÞ$choiceðkÞ$e�N�1�k
toc + constant

(Equation 3)

Neuron 104, 1–15, December 18, 2019 5

Please cite this article in press as: Hwang et al., Corticostriatal Flow of Action Selection Bias, Neuron (2019), https://doi.org/10.1016/
j.neuron.2019.09.028



bias of that trial in the model, closely fitting the history bias that

varies trial by trial (Figure 3E; Equation 6 in STAR Methods;

r = 0.5 ± 0.03, mean ± SEM across 51 sessions, cross-validated).

Therefore, our current dataset reproduced our previous finding

that the ITI activity in PPC represents the history bias (Hwang

et al., 2017).

Having established the representation of history bias in the

general population of PPC neurons, we examined whether

PPC-STR and PPC-pM2 neurons encode the bias information

differently from each other and/or from the general population.

Projection neurons were labeled with tdTomato as we injected

retrograde CAV-Cre in either STR (n = 5 mice) or pM2 (n = 8

A B C

D E

Figure 3. PPC Neurons Represent History Bias in Two-Choice Task

(A) Schematic of the two-choice joystick task.

(B) The choice prediction accuracy of stimulus model versus full model across 51 imaging sessions (left) in 13 mice (right). The stimulus model uses stimulus and

constant as predictors, and the full model uses stimulus, constant, and history information. Thin lines: individual sessions or mice. Thick lines, mean ± SEM. BPS

test. History has a significant impact on choice.

(C) The Akaike information criteria (AIC) of stimulus model versus full model across 51 sessions (left) in 13 mice (right). The smaller the AIC, the better the pre-

diction. BPS test. Thick lines, mean ± SEM.

(D) The mean activity of example neurons in PPC during the inter-trial interval (ITI) and stimulus period of the two-choice task. Black, mean ± SEM across all

forward choice trials in one imaging session (202 for the top three neurons and 65 for the bottom two neurons); red, mean ± SEM across all downward trials in the

same session (65 and 137 for the top and bottom row neurons, respectively). These neurons show tuning to the upcoming (N) choice during the ITI (i.e., N-choice

tuning).

(E) Example traces of trial-by-trial history bias estimated from the full model (black; Equation 3) and a lasso regression fit (purple, cross-validated) by the ITI activity

of a population of PPC neurons, indicating that the PPC population represents the history bias. In the lasso regression, history bias in each trial was decoded from

a weighted sum of the ITI activity of all imaged PPC neurons (STAR Methods).
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mice) before behavioral training began. In the case of CaMK2-

tTA::tetO-GCaMP6s, we made a second injection of AAV-

CAG-FLEX-tdTomato in PPC (Figure 4A; STAR Methods). Of

the projection neurons that were retrogradely labeled, 47% ±

3% (mean ± SEM across 51 PPC fields) showed detectable

GCaMP6s signals. Using this method, we examined the activity

of PPC-STR neurons (n = 1,322 from 26 imaging fields in 5 mice),

PPC-pM2 neurons (n = 465 from 25 fields in 8 mice), and those

that were not labeled by tdTomato (n = 11,702 neurons from

51 fields in 13 mice). In the mice where PPC-pM2 or PPC-STR

neurons are labeled, respectively, the unlabeled neurons should

include neurons that project to the opposite target (STR or pM2)

or neither target and a fraction of neurons that project to pM2 or

STR that did not get labeled. We chose the fields of view with a

high density of tdTomato neurons in each mouse. As a result,

PPC-STR neurons tended to be imaged from deeper fields

than PPC-pM2 neurons (Figure 4B), consistent with the histolog-

ical assay in our two-target retrograde tracing experiment (Fig-

ure 1F). Overall, in our imaging fields, PPC-STR neurons tended

to be denser than PPC-pM2 neurons (Figure 4C). Mice in the two

labeling groups (PPC-STR versus PPC-pM2) showed similar his-

tory dependence and task performance (Figure S1).

To compare bias information coding among three types of

neurons (PPC-STR, PPC-pM2, and unlabeled), we first pooled

neurons across sessions for each type and computed the frac-

tions of N-choice tuning during the ITI. We found that N-choice

tuning was substantially more prevalent in PPC-STR neurons

than in the unlabeled or PPC-pM2 neurons and less prevalent

in PPC-pM2 neurons than in the unlabeled neurons (c2 test,

p < 0.0005 in all comparisons; Figure 4D). The differences be-

tween the neuron groups were also robustly observed within in-

dividual sessions (Figures 4E and 1 imaging field/session). That

is, PPC-STR neuronsweremore likely tuned to N choice than un-

labeled neurons within individual sessions (BPS test, p < 0.04),

while PPC-pM2 neurons were less likely tuned to N choice

than unlabeled neurons within individual sessions (BPS test,

p < 0.03).

Given that PPC-STR neurons tended to be imaged from

deeper fields (Figure 4B), we asked whether N-choice tuning of

PPC neurons increases with depth in general. To answer this

question, we examined correlation between the depth of imaging

field and the fraction of neurons tuned to N choice in all imaged

neurons in each field (i.e., all neurons expressing GCaMP6s in

each field). Across 42 sessions in which we recorded the depth

of imaging field, we found a significantly positive correlation

that the fraction of neurons tuned to N choice increases with

depth (Pearson’s correlation coefficient, r = 0.6, p < 1e-5). This

depth-dependent tuning within PPC raises a possibility that

different N-choice tuning between PPC-STR and PPC-pM2 pop-

ulations might be solely explained by the difference in their

depths. To test this possibility, we analyzed a subset of imaging

fields acquired at similar depths (250–350 mm) between the two

projection groups (9 sessions per group; Figure 4F). When the

depths were matched, the fraction of neurons tuned to N choice

in all imaged neurons in each field was not different between the

two groups (Figure 4G). However, the fraction of neurons tuned

to N choice was still significantly larger in PPC-STR than PPC-

pM2 or unlabeled neurons even in this depth-matched compar-

ison (Figure 4H; Figure S2). This result indicates that differences

in choice information coding between the two projection groups

cannot be fully explained by the difference in their depths.

Notably, significant tuning to N choice could reflect the encod-

ing of the continuously varying history bias as suggested earlier,

or the encoding of the binary choice. To separate tuning to these

Figure 4. History Bias Is Preferentially Encoded by PPC-STR Neurons

(A) PPC-STR or PPC-pM2 neurons were retrogradely labeled with tdTomato in mice expressing GCaMP6s in excitatory neurons. Right: an example PPC im-

aging field.

(B) Histograms of the fractions of imaged projection neurons along cortical depth. Orange, PPC-STR neurons; Blue, PPC-pM2 neurons. PPC-STR neurons tend

to reside in deeper layers than PPC-pM2 neurons. BTS test.

(C) The number of neurons that were retrogradely labeled and showed detectable GCaMP signals in the field of each imaging session (1 field/session). Circles,

individual sessions (26 PPC-STR and 25 PPC-pM2 sessions from 5 and 8 mice, respectively); black line, mean ± SEM across sessions. BTS test.

(D) The fraction of neurons that are significantly tuned to the upcoming choice during the ITI (N-choice tuning) for PPC-STR, unlabeled, and PPC-pM2 neurons.

Data were pooled across animals. PPC-STR neurons are more likely tuned to N choice than PPC-pM2 and unlabeled neurons. Error bar, SE. c2 test.

(E) Within-session comparison of the fraction of N-choice tuning during the ITI; PPC-STR versus unlabeled population (left) or PPC-pM2 versus unlabeled

population (right). Each dot indicates a single session (1 field/session). The imaging depth of each session is color coded. Open dots indicate sessions with no

depth information. BPS test was applied to the fractions of N-choice tuning between projection and unlabeled neurons. BTS test was applied to differences in the

fraction of N-choice tuning (projection � unlabeled) between the two projection groups.

(F) A subset of imaging sessions were selected in which the imaging depths were between 250 and 350 mm to match the depths between the two projection

groups (n = 9 sessions per group). Circles, individual sessions; black line, mean ± SEM across sessions. BTS test.

(G) Depth-matched comparison of the fraction of neurons with N-choice tuning during the ITI in the general population of PPC neurons between the depth-

matched PPC-STR versus PPC-pM2 imaging sessions. All GCaMP6s-positive neurons were included in this analysis regardless of tdTomato expression. Circles,

individual sessions; black line, mean ± SEM across sessions. BTS test. The responses of all imaged neurons are similar between the two depth-matched imaging

groups.

(H) Depth-matched comparison of the fraction of neurons with N-choice tuning during the ITI in three PPC subpopulations, PPC-STR, unlabeled, and PPC-pM2

neurons. Data from the depth-matched sessions were pooled across animals. Even when the depths werematched, PPC-STR neurons aremore likely tuned to N

choice than unlabeled and PPC-pM2 neurons. Error bar, SE. c2 test.

(I) The fraction of neurons whose ITI activity showed significant weights for N choice (left) or history bias (right) in a multiple linear regression. Data were pooled

across animals. PPC neurons, especially PPC-STR neurons, encode history bias more preferentially than N choice. Error bar, SE. c2 test.

(J) The estimated trial-by-trial history bias (Equation 3) was decoded from the ITI activity of each neuronal population, similar to Figure 3E (STAR Methods).

Decoder performance was measured as the Pearson’s correlation coefficient between the decoded bias and actual bias. The number of neurons in three

populations was matched by subsampling (1–20 neurons). For each projection population, only the sessions with at least 20 projection neurons were included.

Mean ± SEM across sessions. BTS test on the average across all population sizes. History bias is encoded preferentially by PPC-STR neurons.
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related variables, we applied a multiple linear regression on the

ITI activity using N choice and the history bias estimated from

the full model (Equation 3) as predictors (STAR Methods) and

compared the fraction of neurons with a significant weight for

each predictor. Supporting the notion that PPC encodes history

bias, the fraction of neurons with a significant weight for the

history bias was significantly higher than the fraction with a

significant weight for N choice in all neuronal groups (c2 test,

p < 0.0001 in all three comparisons; Figure 4I). Moreover, the

fraction of neurons with a significant weight for the history bias

was significantly higher in PPC-STR than PPC-pM2 and unla-

beled neurons (c2 test, p < 0.0001 in both comparisons; Fig-

ure 4I). As shown in Equation 3, the history bias arises from three

types of history: outcome, choice, and outcome-choice

interaction. To examine the coding of each of the three bias com-

ponents, we performed a similar multiple linear regression re-

placing the history bias with its three separate bias terms. We

found that, in all three populations of neurons, the fraction of neu-

rons with a significant weight was significantly larger for the

outcome history bias than the choice history bias or interaction

history bias (c2 test, p < 0.0001 in all six comparisons; Figure S3).

Furthermore, for both the outcome history bias and choice his-

tory bias, the PPC-STR population contained a significantly

higher fraction of neurons with a significant weight than the

PPC-pM2 population (c2 test, p < 0.05 in both comparisons;

Figure S3).

We next evaluated history bias coding at the population level.

As shown earlier, the history bias that varies trial by trial is well

represented by a linear sum of the ITI activity of neurons in the

general PPC population (Figure 3E). Therefore, to compare his-

tory bias coding at the population level, we computed how well

a linear sum of the activity of individual neurons in the three

groups can fit the history bias on a trial-by-trial basis (Equation 6

in STARMethods). This analysis revealed that the population ac-

tivity of PPC-STR neurons reflected the history bias better than

unlabeled and PPC-pM2 neurons (BTS test for the average

across sample sizes, p < 0.02 and p < 0.0001, respectively; Fig-

ure 4J). A better coding of the history bias by the PPC-STR pop-

ulation was also confirmed in other, non-linear decoding

methods (Figure S4; STARMethods). Taken together, the history

bias information is preferentially represented in the PPC-STR

population than the other two subpopulations, suggesting that

thePPCmaybias action selection via its STRprojection pathway.

PPC-STR Pathway Is Required for History Bias
Our finding that history bias is preferentially encoded in the PPC-

STR population predicts that perturbing the activity of PPC-STR

neuronsmight alter the history dependence of choice. To test this

prediction, we performed inactivation of PPC-STR neurons and

examined its effects on choice behavior. The PPC-STR neuron-

specific inactivation was achieved by injecting CAV-Cre in STR

and AAV encoding the light-dependent chloride pump,

halorhodopsin, in a Cre-dependent manner (AAV-EF1a-DIO-

eNpHR3.0-eYFP) in PPC (n = 7 mice; Figure 5A). Both injections

wereperformedbilaterally. Inactivation experimentswere carried

out at least 8 weeks after the injections to ensure high expression

levels of the opsin. Inactivation was performed in 15% of

randomly selected trials (light-on), by shining green light on the

cranial windows over PPC bilaterally during the ITI (Figure 5B).

To inspectwhether history dependencewasaffected by inactiva-

tion, we used the aforementioned behavioral models. First, we fit

the full model (Equation 1) and stimulus model (Equation 2) sepa-

rately to the observed choices (both 10-fold cross-validated).

Then, we estimated history dependence as the difference of

choice prediction accuracy between the two models:

History dependence = full model accuracy

� stimulus model accuracy

The rationale is that any additional choice variability explained

by the full model is attributable to the history terms in the full

model. In the inactivation experiment, we measured history

dependence separately for inactivation (light-on) and control

(light-off) trials (number of trials were matched; STAR Methods).

If history bias is mediated by PPC-STR neurons, inactivating

them would decrease history dependence in animals’ choices.

Indeed, we found that history dependence was significantly

weaker in light-on than light-off trials (BPS test, p < 0.0001; Fig-

ure 5C). The decreased history dependence was not due to non-

specific effects of light, as the green light applied over the head

bar in the same mice did not affect history dependence (BPS

test, p = 0.12; Figure 5C). Thus, the activity of PPC-STR neurons

is required for normal history dependence in our task.

We next examined the specificity of this effect by performing

an analogous inactivation experiment on PPC-pM2 neurons

(n = 8 mice; STAR Methods). In contrast to the PPC-STR inacti-

vation, history dependence was not significantly affected by in-

activating PPC-pM2 neurons (BPS test, p = 0.38; Figure 5D).

Thus, the activity of PPC-pM2 neurons is not required for normal

history dependence. Furthermore, this experiment serves as a

control for non-specific effects of light within PPC, such as heat-

ing. These results suggest that PPC-STR neurons are selectively

involved in controlling history bias.

PPC-STR neurons maymediate history bias through their pro-

jection to STR. Alternatively, the bias may be mediated by axon

collaterals of these neurons to other downstream targets and

projections to STR may not be important for the bias. To distin-

guish these possibilities, we performed a projection-terminal

inactivation experiment. We expressed halorhodopsin selec-

tively in PPC-STR neurons bilaterally in the same way as the

soma inactivation experiment described above. We then im-

planted fiber optic cannulae in STR bilaterally, targeting the

area within STR that receives dense projections from PPC

(STAR Methods), to inactivate the projection terminals in STR

(n = 7 mice; Figure 5E). We found that, similar to soma inactiva-

tion, inactivation of the terminals of PPC-STR neurons in

STR significantly decreased history dependence (BPS test,

p < 0.0005; Figure 5F). The significant effect is not due to non-

specific effects such as heating, as a delivery of light to STR in

the absence of halorhodopsin did not affect history dependence

in a consistent way (Figures 5E and 5F). Therefore, inactivating

PPC-STR neurons, both soma and terminal, but not PPC-pM2

neurons, lead to a significant decrease in history dependence.

Direct comparisons across experiments revealed that the effect

sizes in soma and terminal inactivation of PPC-STR neurons

were significantly larger than that of PPC-pM2 soma inactivation
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(BTS test, p < 0.05 in both comparisons; Figure 5G). The effect

sizes of PPC-STR neuron soma inactivation and terminal inacti-

vation were not significantly different (p = 0.98; Figure 5G).

In another analysis, we assessed history dependence using a

third behavioral model, history model, in which choices are pre-

dicted from choice-outcome history terms without stimulus

(Equation 4 in STAR Methods), following the methods we used

in our previous publication (Hwang et al., 2017). This analysis

also revealed the same finding that history dependence is signif-

icantly altered only in PPC-STR soma and terminal inactivation

(Figures S5A–S5C; STAR Methods). It is also noteworthy that

the effect size of inactivation specific to the PPC-STR neurons,

both soma and terminal, is similar to what we observed when

we inactivated the entire PPC in our previous publication by

A B C D

F GE

(n =

(n = (n =
(n =

(n =

Figure 5. Inactivating the PPC-STR Pathway Weakens History Bias

(A) Selective expression of halorhodopsin in projection neurons in PPC.

(B) Each mouse performed both soma inactivation and headbar control sessions that were randomly interleaved (one session/day). In inactivation sessions, a

bifurcated optical patch cord was placed over PPC bilaterally. In headbar control sessions, the patch cord was placed above the headbar. In both session types,

green light (532 nm) was delivered during the ITI of 15% of randomly selected trials.

(C) History dependence (full model accuracy� stimulusmodel accuracy) in light-off versus light-on trials (10-fold cross-validated) in inactivation (left) and headbar

control (right) sessions. Mice (n = 7) expressed halorhodopsin in PPC-STR neurons. Thin lines, individual mice; thick lines, mean ± SEM across mice. As

inactivation and headbar control data were collected from the same mice, BPS tests were applied to both within-group (light-off versus light-on) and between-

group (inactivation versus control) comparisons. Between-group comparison was made on light effects (D; light-on trials � light-off trials). Inactivation of PPC-

STR neurons reduced history dependence.

(D) The same as (C) but for mice (n = 8) expressing halorhodopsin in PPC-pM2 neurons. Inactivation of PPC-pM2 neurons did not reduce history dependence.

(E) PPC-STR axon terminal inactivation experiment. In the inactivation group (left), halorhodopsin was expressed in PPC-STR neurons. In the control group (right),

GFP was expressed in PPC-STR neurons. Fiber optic cannulae were implanted in STR bilaterally.

(F) The same as (C), but the green light was delivered to STR at the axon terminals of PPC-STR neurons. Separate sets of mice performed inactivation (n = 7mice)

and control (n = 6mice) sessions; thus, BPS and BTS tests were applied to within-group and between-group comparisons, respectively. Inactivation of STR axon

terminals of PPC-STR neurons reduced history dependence. Thick lines, mean ± SEM.

(G) Inactivation effect measured as change of history dependence (light-on trials � light-off trials) by the inactivation of PPC-STR somas, PPC-pM2 somas, and

PPC-STR axon terminals in STR. BTS test. Soma and terminal inactivation of PPC-STR neurons selectively reduced history dependence. Thick lines,

mean ± SEM.
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activating parvalbumin-positive inhibitory neurons (Figure S5D;

Hwang et al., 2017), further highlighting the importance of the

PPC-STR pathway in controlling history bias.

Taken together, these results consistently indicate that PPC

controls the history bias in our decision-making task via its pro-

jections to STR. Thus, the bias information encoded in PPC dur-

ing the ITI might be offloaded to the basal ganglia where it is used

to bias action selection.

PPC-pM2 Neurons Are Involved in Movement Control
The results above suggest that history dependence is

controlled selectively by the PPC-STR pathway. An intriguing

A

B

C

D

(n = (n = (n = (n =

Figure 6. Inactivating PPC-pM2 Neurons Al-

ters Movement Kinematics

(A) Trajectories of movements from movement onset

to the target (forward) in example PPC-STR versus

PPC-pM2 soma inactivation sessions. Thin lines, 10

trials in each light condition; red circles, the origin of

movements.

(B) The same as (A) but for example headbar control

sessions.

(C) Trial-to-trial correlation of movement trajectories

on light-off versus light-on trials (STAR Methods).

The higher the correlation coefficient, the more

consistent/similar the movements. The same ses-

sions used for the analysis of history dependence

(Figure 5) were subjected to kinematic analysis. Left:

PPC-STR soma inactivation group (n = 7 mice).

Middle: PPC-pM2 soma inactivation group (n = 8

mice). Right: PPC-STR axon terminal inactivation

(n = 7 mice) group and control group (n = 6 mice).

BPS tests were applied to all within-group com-

parisons (light-off versus light-on). For between-

group comparisons (inactivation versus control),

BPS test in soma inactivation groups, and BTS test

in terminal groups. Thin lines, individual mice; thick

lines, mean ± SEM across mice. Inactivation of

PPC-pM2 neurons reduced trial-to-trial consistency

of movement trajectories.

(D) The same as (C) but for the peak velocity of

movements. Inactivation of PPC-pM2 neurons

reduced the peak velocity of movements.

remaining question is which PPC functions

require PPC-pM2 neurons. Studies of hu-

mans and non-human primates reported

that PPC is also important for the control

of reaching movements (Pisella et al.,

2000; Hwang et al., 2012, 2014; Andersen

et al., 2014). The stronger inputs from

sensorimotor areas to PPC-pM2 neurons

observed in our long-range input assay

(Figure 2) suggest that PPC-pM2 pathway

might be involved in the control of move-

ments. To test this possibility, we

examined how kinematic features of

movements in our task were affected

in the three inactivation experiments

described above. We found that task per-

formance (i.e., fraction of correct choice)

did not change significantly in any of the inactivation condi-

tions (Figure S6). However, the similarity of movements from

trial to trial was significantly reduced by inactivating PPC-

pM2 neurons (Figure 6A). This effect was not observed in con-

trol or PPC-STR inactivation sessions, both soma and terminal

(Figures 6A–6C). In addition, the peak velocity of movements

was slightly but significantly reduced by inactivating PPC-

pM2 neurons but not PPC-STR somas or terminals (Figure 6D).

These kinematic changes from inactivation of PPC-pM2 during

ITI suggest that PPC-pM2 neurons might contribute to the

preparation of movements to produce faster and consistent

movements.
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DISCUSSION

We found that PPC-STR and PPC-pM2 neurons form distinct

subpopulations and receive different patterns of long-range

cortical inputs. Furthermore, PPC-STR neurons encode history

bias more strongly than unlabeled and PPC-pM2 neurons, and

inactivating PPC-STR neurons, but not PPC-pM2, weakens his-

tory bias. In contrast, inactivating PPC-pM2 neurons, but not

PPC-STR neurons, alters movement kinematics. These results

suggest that PPC controls different functions through different

projection pathways, history-dependent bias in decision making

via its projections to STR, and kinematic control of movements

via its projection to pM2 (Figure 7).

We found that PPC-STR and PPC-pM2 neurons receive long-

range inputs from similar cortical areas, but the proportions of in-

puts were different. These results suggest that these two PPC

subpopulations form partially distinct, parallel input-output path-

ways. Similar to our finding, several subcortical areas that

mediate diverse behavioral effects contain parallel projection

pathways, each associated with a distinguishable pattern of

long-range inputs (Lammel et al., 2012; Wall et al., 2013; Know-

land et al., 2017; Ren et al., 2018). However, differences in long-

range inputs may not be the only cause underlying the different

bias coding between the two PPC projection populations. Neural

processing within PPCmicrocircuitry likely amplifies the different

long-range inputs that these projection neurons receive. Further-

more, it has been found that neurons projecting to different tar-

gets can display distinguishable genetic phenotypes (Murugan

et al., 2017; Economo et al., 2018; Ren et al., 2018). Thus, distinct

intrinsic properties of neurons comprising each subpopulation

may also contribute to the functional differences between the

pathways.

Our results do not exclude the possibility that other output

pathways in PPC that are not tested in this study might also

be necessary for controlling history bias. Nevertheless, inacti-

vation of PPC-STR terminals in STR weakened history bias as

much as inactivation of all PPC neurons, suggesting that the

PPC-STR pathway is critical for history bias. We acknowledge

that optogenetic inactivation of axon terminals is challenging

and inhibitory opsins can sometimes facilitate neurotrans-

mitter release (Mahn et al., 2016; Messier et al., 2018). One

of these studies recommended the use of halorhodopsin for

terminal inactivation as no facilitating effects were observed

(Mahn et al., 2016). Thus, we chose to use halorhodopsin

for our terminal inactivation experiment. Regardless, however,

the ultimate purpose of our terminal inactivation experiment

was to perturb the normal pattern of activity of the PPC-STR

pathway, and an artificial and non-specific decrease or in-

crease of neurotransmitter release would both serve this

purpose.

The involvement of the PPC-STR pathway in history bias fits

well with previous findings regarding STR. First, sensorimotor

associative learning can modify synaptic strengths between

sensory cortical neurons and dorsal striatal neurons (Znamen-

skiy and Zador, 2013; Xiong et al., 2015). Such plasticity can

generate a learned stimulus-response map by which sensory

inputs can drive associated responses. The stimulus-

response map would be an ideal locus at which history-

dependent information biases sensory-guided choices.

Second, dorsal striatal neurons encode the reward history-

dependent action value (Samejima et al., 2005), and transient

optogenetic stimulation of dorsal striatal neurons during a de-

cision-making period can bias reward history-dependent

choices (Tai et al., 2012). Therefore, STR appears to be a

part of the circuit that biases choices in a history-dependent

manner. Third, striatal neurons tuned to a particular action

show elevated pretrial activity when the neuron’s preferred

action is associated with a higher reward (Lauwereyns et al.,

2002). In this case, the animals are presumably biased toward

the action with a higher reward, so the pretrial activity modu-

lation in striatal neurons may be reflective of history bias that

the STR receives from PPC inputs. Taken together, a compel-

ling idea is that sensory-driven action selection in STR might

be influenced by history bias transmitted from PPC, and

such an interaction between PPC and STR may give rise to

complex history dependence in sensory-guided decision-

making tasks (Busse et al., 2011; Abrahamyan et al., 2016;

Hwang et al., 2017; Akrami et al., 2018).

We found that inactivation of PPC-pM2 neurons alters

movement kinematics, resonating well with our anatomical

result that PPC-pM2 neurons receive stronger inputs from

sensorimotor areas compared to PPC-STR neurons. It is

also compatible with the previous reports in humans and

non-human primates that inactivating PPC or lesions in PPC

disturb reaching movements (Desmurget et al., 1999; Ander-

sen et al., 2014). These studies suggested that PPC is

involved in both planning and online adjustment of move-

ments. The kinematic changes induced by our ITI inactivation

might be related to the function of movement planning. The ITI

activity of PPC-pM2 neurons might be used to prime pM2

Figure 7. PPC Serves Multiple Functions through a Pathway-Spe-

cific Functional Division

Schematic of parallel subsystems in PPC. PPC neurons involved in biasing

action selection receive stronger inputs from association areas and project to

STR. PPC neurons involved in the control of movements receive stronger in-

puts from sensorimotor areas and project to pM2.
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and/or its connected motor cortex to form preparatory activity

for a movement, likely the one associated with the choice

bias. Given that preparatory activity in motor cortex encodes

various kinematic features of upcoming movements such as

the reaching movement direction, amplitude, and velocity

(Crammond and Kalaska, 1994; Churchland et al., 2006;

Guo et al., 2014), the PPC-pM2 pathway may be critical for

the formation of proper preparatory activity in the downstream

motor areas to ensure normal movement speed and

consistency.

In summary, we conclude that the PPC-STR pathway is selec-

tively involved in biasing action selection and PPC-pM2 neurons

in the control of movements. We propose that PPCmay control a

wide range of behavioral functions by operating within-region

subsystems in parallel, each with distinct patterns of input-

output connectivity.
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to the LeadContact, Takaki Komiyama (tkomiyama@

ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were in accordance with protocols approved by the UCSD Institutional Animal Care and Use Committee and guide-

lines of the National Institute of Health. Mice (both male and female, at least 6 weeks old; anatomical tracing: wild-type C57BL/6,

Charles River Laboratories; calcium imaging: triple cross between B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J [JAX 007914; also

known as Rosa26-CAG-LSL-tdTomato], B6.CBA-Tg(Camk2a-tTA)1Mmay/J [JAX 003010; also known as Camk2a-tTA], and

B6.DBA-Tg(tetO-GCaMP6s)2Niell/J [JAX 024742; also known as tetO-GCaMP6s] or cross between Camk2a-tTA and tetO-

GCaMP6s; optogenetic perturbation:wild-type C57BL/6 orRosa26-CAG-LSL-tdTomato) were housed in a roomwith a reversed light

cycle (12 h–12 h). Experiments were performed during the dark period. We performed experiments in bothmale and female subjects,

but did not perform sex-specific analyses as both types were randomly assigned to all experimental groups that we compared.

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV-DJ-EF1a-DIO-mRuby2-P2A-TVA Lim Lab N/A

AAV-DJ-EF1a-DIO-RVG Lim Lab N/A

EnvA-RVDG-eGFP Lim Lab N/A

RVDG-GFP Lim Lab N/A

RVDG-tdTomato Lim Lab N/A

CAV-Cre BioCampus N/A

AAV1-CAG-tdTomato UPenn Vector Core Addgene: 105554-AAV1

AAV1-CAG-FLEX-tdTomato UPenn Vector Core Addgene: 51503-AAV1

AAV1-CAG-FLEX-eGFP UPenn Vector Core Addgene:51502-AAV1

AAV9-EF1a-DIO-eNpHR3.0-eYFP UPenn Vector Core Addgene: 26966-AAV9

Chemicals, Peptides, and Recombinant Proteins

CTB-Alexa Fluor 594 conjugate Thermo Fisher Cat#C22842

CTB-Alexa Fluor 488 conjugate Thermo Fisher Cat#C22841

Experimental Models: Organisms/Strains

Mouse: wild-type (C57BL/6) Charles River Laboratories Strain Code:027

Mouse: B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J;

also known as Rosa26-CAG-LSL-tdTomato

The Jackson Laboratory Cat#007914

Mouse: B6.CBA-Tg(Camk2a-tTA)1Mmay/J; also

known as Camk2a-tTA

The Jackson Laboratory Cat#003010

Mouse: B6.DBA-Tg(tetO-GCaMP6s)2Niell/J; also

known as tetO-GCaMP6s

The Jackson Laboratory Cat#024742

Software and Algorithms

MATLAB v. 2014a & 2019a MathWorks RRID: SCR_001622

ImageJ FIJI Schneider et al., 2012 RRID: SCR_002285

Bootstrap test Stout et al., 1999 N/A

Spike-triggered mixture model Theis et al., 2016 https://github.com/lucastheis/c2s

Lateral motion correction of calcium images Mitani and Komiyama, 2018 N/A
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METHOD DETAILS

Virus production
AAV-EF1a-DIO-mRuby2-P2A-TVA and AAV-EF1a-DIO-RVG were packaged as serotype DJ and generated as previously described

(Lim et al., 2012; Knowland et al., 2017). In brief, AAV vectors were produced by transfection of AAV293 cells (Agilent) with three plas-

mids: an AAV vector plasmid carrying target constructs (DIO-mRuby2-P2A-TVA, DIO-RVG), AAV helper plasmid (pHELPER; Agilent),

and AAV rep-cap helper plasmid (pRC-DJ). At 72 hr post-transfection, the cells were collected and lysed by a repeated freeze-thaw

procedure. Viral particles were then purified by an iodixanol step-gradient ultracentrifugation and subsequently concentrated using a

100-kDa molecular cutoff ultrafiltration device (Millipore). The genomic titer was determined by quantitative PCR. The AAV vectors

were diluted in PBS to a working concentration of approximately 1012 - 1013 genomic copies/ml.

Rabies viruses were designed and generated as previously described (Osakada and Callaway, 2013; Knowland et al., 2017). In

brief, B7GG cells were transfected with a total of five plasmids: four plasmids expressing the viral components pcDNA-SADB16N,

pcDNA-SADB16P, pcDNA-SADB16L, pcDNA-SADB16G and the rabies virus genomic vector carrying eGFP or tdTomato coding

sequence. The virus-containing media was collected 3-4 days post-transfection and used for further amplification. Viral particles

were harvested from the media by centrifugation using SureSpin630 rotor at 20,000 rpm for 2 hr. Rabies viral particles were recon-

stituted from the pellets with PBS and immediately stored at �80�C. To generate EnvA-pseudotyped, glycoprotein-deleted rabies

virus expressing eGFP (EnvA-RVDG-eGFP), we used a modified version of a published protocol (Osakada and Callaway, 2013).

Anterograde tracing
For anterograde tracing, mice (wild-type C57BL/6) were injected with 20 nL of virus encoding tdTomato (AAV1-CAG-tdTomato;

UPenn Vector Core) in the right PPC (1.7 mm lateral, 2.0 mm posterior, 0.35 mm beneath the dura). In 10-14 days, the mice were

perfused transcardially with PBS followed by paraformaldehyde solution (PFA, 4%). The brain was carefully removed from the skull

and stored in 4% PFA solution for a day and subsequently in 30% sucrose solution for 1-3 days at 4�C. The brain was then cut in

60 mm coronal sections on a freezing microtome throughout the anterior-posterior axis (+2.8 to –4.2 mm from bregma). The sections

were mounted on Superfrost Plus microscope slides (Fisher Scientific) with CC/Mount mounting medium (Diagnostic Biosystems).

To visualize the fluorescent axons projecting from PPC, the mounted slides were manually imaged using a Zeiss Axio Zoom

microscope.

Retrograde tracing
For two-target retrograde tracing, wild-type mice were placed in a stereotaxic frame and retrograde tracers were injected in the right

STR (2.2 mm lateral, 0.8 mm posterior to bregma, 2.3 mm beneath the dura) and the right pM2 (0.5 mm lateral, 0.3 mm anterior to

bregma, 0.35 mm beneath the dura) through bur holes. In one set of mice (n = 6), we injected 100 nL of RVDG-GFP in STR and 100 nL

of RVDG-tdTomato in pM2. In the other set (n = 3), we injected 500 nL of CTB-Alexa Fluor 594 in STR, and 500 nL of CTB-Alexa Fluor

488 in pM2. The coordinates of STR and pM2 were selected to target the areas showing the densest projections from PPC as iden-

tified in the anterograde tracing experiment. After a week, the mice were perfused and their brains were prepared as described

above. 60 mm coronal sections containing PPC (1.8-2.2 mm posterior to bregma) were mounted on Superfrost Plus slides with

CC/Mount mounting medium. Brain slices expressing fluorescent proteins encoded by RVDG were imaged using a Zeiss Axio

Zoom microscope, and brain slices with CTB labeling were imaged using an Olympus FluoView FV1200 confocal microscope.

The number of somas expressing GFP and/or tdTomato were manually counted. When counting somas labeled with CTB-Alexa

Flours, we first used an ImageJ (Schneider et al., 2012) tool find maxima to automatically detect cell bodies with fluorescent signals

distinguishable from the background, and then manually corrected false or missed detections by visual inspection. Counting was

performed within PPC, spanning 1.8-2.2 mm posterior to bregma and 1.0-2.7 mm from the midline.

Projection-specific monosynaptic retrograde tracing
For projection-specific monosynaptic retrograde tracing, we adapted the previously published protocol (Schwarz et al., 2015; Know-

land et al., 2017). Wild-type mice were placed in a stereotaxic frame and Cre-encoding canine adenovirus (CAV-Cre, 150 nL;

BioCampus) was injected in either the right STR or pM2 through a bur hole. When injecting CAV-Cre in STR, we performed the

following procedure to minimize virus leakage and backflow in the brain areas above STR. We first back-filled a glass pipette

(�30 mm outer diameter at the tip) with mineral oil, and then we front-filled the pipette tip with 150 nL of CAV-Cre followed by 10

nL of mineral oil by retracting the pipette plunger using a hydraulic manipulator (Narishige). The mineral oil at the tip provides a

seal of the tip to prevent virus leakage during the advancement of the tip toward the target. We advanced the pipette past the target

by �500 mm and unloaded the mineral oil. After retracting back to the target, we unloaded the virus slowly over �15 minutes, after

which the pipette was notmoved for 20minutes allowing the virus to spread in the target region.When retracting the pipette out of the

brain, we stopped every 200 mm and injected 5 nL of mineral oil to prevent backflow of the virus.

On the same or the following day of CAV-Cre injection, 1:1 mixture of AAV-DJ-EF1a-DIO-mRuby2-P2A-TVA and AAV-DJ-EF1a-

DIO-RVG was injected in the right PPC through a bur hole (100 nL, each at a depth of 250 mm and 650 mm). In three weeks after the

AAV injection, EnvA-pseudotyped, glycoprotein-deleted rabies virus (EnvA-RVDG-eGFP, 150 nL, each at a depth of 250 mm 650 mm)

was injected in the right PPC. After a week, mice were perfused and prepared as described above for histological analysis.
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Each brain was cut in 60 mmcoronal sections on a freezingmicrotome throughout the anterior-posterior axis (+2.8 to –4.2 mm from

bregma). The sections were mounted on Superfrost Plus microscope slides with DAPI Fluoromount-G mounting medium

(SouthernBiotech). The mounted slides were loaded to an Olympus VS120 slide scanner to visualize fluorescent cells. In brief,

this process first obtained a brightfield overview image. Regions of interest were manually drawn over each section and focused

with 5 focal points per region. For each section, 3 channels were obtained sequentially for DAPI, eGFP and mRuby2. Exposure times

were independently adjusted to maximize signal to noise ratio. After image acquisition, the display intensity for each section for each

channel was manually adjusted to clearly identify single cells. We attempted to identify the starter neurons, which should express

both eGFP and mRuby2. However, we observed very few double-positive neurons, which we speculate might be due to a compe-

tition of the two viral vectors when infecting the same neurons.

As labeled somas were found predominantly in the right hemisphere (i.e., ipsilateral to injections), we performed our manual map-

ping analysis only for the inputs from the ipsilateral hemisphere, based on the mouse brain atlas (Paxinos and Franklin, 2004). We

focused our long-range input analysis on 19 dorsal cortical areas, which were clustered into 8 subgroups as follows: 1) primary motor

cortex, 2) secondary motor cortex, 3) primary somatosensory area (S1) upper-body regions: S1 forelimb region, S1 trunk region, S1

shoulder region, and S1 shoulder/neck region, 4) S1 hindlimb region, 5) all other primary somatosensory area: unassigned S1, S1

barrel region, and S1 dysgranular region, 6) cingulate area: cingulate cortex area1, cingulate cortex area2, and cingulate/retrosplenial

complex (transitional zone between cingulate and retrospleninal cortex), 7) retrosplenial area: retrosplenial granular cortex, and ret-

rosplenial agranular cortex, 8) visual area: primary visual cortex, secondary visual cortex (V2)mediomedial area, V2mediolateral area,

and V2 lateral area. Neuron counts were normalized as a fraction of the total number of green fluorescent neurons from both hemi-

spheres in each brain, including those that were not in the 19 areas analyzed in detail.

Two-choice joystick task
Prior to imaging or inactivation experiments, micewere trained under head-fixation in the behavioral apparatus, approximately 1 hour

per day over a period of 2-4 months. The two-choice joystick task was gradually shaped through multiple training steps similar to the

procedures described in our previous study (Hwang et al., 2017). In the two-choice task, in each trial, one of two visual stimuli (forward

or downward drifting gratings) was presented for 1 s. Two seconds after the stimulus offset, an auditory tone (‘go’ cue) was played to

mark the answer period. At the same time, the joystick was released from the electromagnetic immobilization at the origin so that

mice could press and move it away from the origin. Mice must press the joystick at least 6 mm away from the origin, within 10 s

from the go cue, in the same direction as the visual stimulus presented earlier, to receive a water reward. The visual stimulus was

randomly selected between forward or downward drifting gratings with the following constraints: 1) after three consecutive rewarded

trials in one direction, the stimulus always switched to the other direction, and 2) after error trials, the same stimulus was repeated.

Behavioral model
We used three variants of behavioral models to predict the choices of our mice; full model, stimulus model, and history model. In the

full model, the choice on a given trial (N) is predicted by a weighted sum of the current stimulus (forward or downward), the history of

past trial outcome (reward or not), choice (forward or downward), and their interaction, and a constant (Equation 1). Past trials were

temporally discounted with an exponential decay (i.e., stronger effect from more recent trials) with time constants fit independently

for each history variable. Stimulus, outcome, and choice were all binary variables with the value of 1 or�1. However, in trials in which

mice did not reach any target, choice and outcome were set to 0 (no choice) and�1 (no reward), respectively. In the stimulus model,

choice probability depends only on the current trial stimulus and a constant (Equation 2). In the history model, choice probability de-

pends on the choice-outcome history and a constant, but not stimulus (Equation 4).

log
pfchoiceðNÞ= forwardg

pfchoiceðNÞ=downwardg=wo$
XN�1

k =1

outcomeðkÞ$e�N�1�k
to +wc$

XN�1

k = 1

choiceðkÞ$e�N�1�k
tc

+woc$
XN�1

k = 1

outcomeðkÞ$choiceðkÞ$e�N�1�k
toc + constant

(Equation 4)

Wemodified our previousmethods (Hwang et al., 2017) tomore rigorously estimate themodel weights and time constants. Instead

of using a grid search on time constants, we computed both time constants and weights based on maximum likelihood estimation

using a MATLAB nonlinear optimization function, fmincon. The objective function was a negative log-likelihood that model param-

eters (i.e., weights and time constants) produce the observed choices, and the time constants were constrained to be nonnegative.

To avoid settling at local optima, we performed searches multiple times from 12 initial conditions in which the initial weights were set

to be 0, 1, 30, or 100, and the initial time constants were 0.01, 50 or 100. The 12 searches resulted in 12 sets of model parameters

(i.e., weights and time constants) and their associated log-likelihood. Of these 12 parameter sets, we used the one associated with

the maximum log-likelihood. The performance of this model was 10-fold cross-validated. That is, trials within a session were divided

in 10 non-overlapping parts, where each part served as a test set once, and the other nine parts as a training set. The fit of the model

(or simply, model accuracy) was measured as the fraction of test trials in which the estimated choice (Equation 5) matched the actual

choice.
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dchoiceðNÞ =
1; if pfchoiceðNÞ= forwardÞg> 0:5

�1; otherwise

�
(Equation 5)

To estimate history dependence in the observed choices, we applied both the full model and stimulus model to the choices and

measured the difference of choice prediction accuracy between the two models (each 10-fold cross-validated). The rationale is that

additional choice variability explained by the full model relative to the stimulus model is attributable to the choice-outcome history

terms that are present only in the full model. To compare history dependence between light-on and light-off trials in our inactivation

experiments, we computed history dependence separately for light-on trials and light-off trials. That is, the full model and stimulus

model were fit separately for the two trial types. To match the number of trials between light-on and light-off conditions, we randomly

subsampled 30 trials, 100 times in each condition, and computed the mean history dependence across 100 subsamples. In addition,

we also examined whether history dependence was altered by inactivation using the history model (Equation 4). This is the method

we used in our previous publication (Hwang et al., 2017). History model weights and constants were estimated from a training set

using only a subset of light-off trials, and the model accuracy was measured on light-on and light-off test trials in a separate set

in a 10-fold cross-validation manner. Our rationale was that if history dependence is altered by inactivation, model accuracy for

light-on trials would be worse than that of light-off trials.

Two-photon calcium imaging experiment
Mice (Camk2a-tTA::tetO-GCaMP6s, n = 10; orCamk2a-tTA::tetO-GCaMP6s::Rosa-CAG-LSL-tdTomato, n = 3) were placed in a ste-

reotaxic frame and implanted with a head-fixation bar. In 5 mice, 100-150 nL of CAV-Cre was injected in the right STR through a bur

hole as described above. In 8 mice, 40-150 nL of CAV-Cre was injected in the right pM2. Following a minimum 3 days of recovery,

daily water consumption was limited to a controlled volume (typically 1 mL/day). After 3-10 days of water restriction, mice began

behavioral training.

After the mouse’s fraction of correct choice reached 60% in the two-choice task, we paused training and allowed unlimited water

access at least for 2 days prior to craniotomy and virus injection. The craniotomy was centered in PPC of the right hemisphere. In

Camk2a-tTA::tetO-GCaMP6s mice, 50 nL of virus encoding Cre-dependent tdTomato (AAV1-CAG-FLEX-tdTomato; UPenn Vector

Core) was injected at a depth of 350 mmbeneath the dura in PPC. After the injection, the craniotomy (�2mm3 3.5 mm) was covered

with an optical window fixed in placewith dental cement. ForCamk2a-tTA::tetO-GCaMP6s::Rosa-CAG-LSL-tdTomatomice, we per-

formed a craniotomy without additional viral injections and covered it with an optical window. Following a minimum 7 days of recov-

ery, daily water consumptionwas limited to a controlled volume (typically 1mL/day). After 5-7 days of water restriction, mice resumed

behavioral training.

After mice recovered the pre-surgery performance, we started imaging cortical activity at the depth of 130-430 mmwith excitation

at 925 nm from a Ti-Sa laser (Spectra-physics) using a two-photon microscope (B-scope, Thorlabs). For each mouse, we selected

imaging fields showing a relatively high density of retrogradely labeled neurons (1-7 fields per mouse; 4 ± 2.3 fields across 13 mice).

Each imaging field was 512 3 512 pixels covering 472 3 508 mm and imaging was performed at �28.4 Hz. Each behavior-imaging

session endedwhen themouse was disengaged from the task, or completed 170 rewarded trials. We included for analysis all distinct

PPC fields in eachmouse that had at least 15 projection cells andwith at least 80 successful trials. Mice completed 144 ± 26.6 (range:

80-171) rewarded trials in each imaging session.

Neural activity analysis
Single cell activity

Using custom MATLAB program, fluorescence images were aligned frame by frame to compensate for lateral motions post hoc

(Mitani and Komiyama, 2018). Regions of interest (ROIs) were manually drawn on the motion-corrected images by circumscribing

the somas based on their GCaMP fluorescence intensity distinguishable from the background. Pixels inside each ROI were consid-

ered as a single neuron, whereas pixels extending radially outward from the soma boundary by 2-6 pixels were considered back-

ground. For each ROI, we subtracted 70% of the average background pixel intensity from the average soma pixel intensity in

each frame to adjust background contamination. The adjusted fluorescence signals were transformed to dF/F using baseline F esti-

mated as the 8th percentile of the fluorescence signal distribution in a 20 s window. dF/F of single neurons was further transformed

into an estimate of spike rates using the spike-triggered mixture model (https://github.com/lucastheis/c2s) (Theis et al., 2016).

Choice selectivity during the ITI

For each neuron, we computed the time-averaged activity in the 4 s ITI in each trial, and performed receiver operating characteristic

(ROC) analysis on the ITI activity, using the binary choice as label and the activity as score. For a given area under the ROC curve

(AUROCC), double the distance from 0.5 (i.e., 2 3 jAUROCC-0.5j) was taken as selectivity strength. For a significance test, we

used the 95th percentile of the null distribution of the selectivity strength (p < 0.05) estimated by choice label shuffling per neuron,

100 times.

Decoding history bias from PPC population activity

We used three different decoding methods: lasso regression, Bayesian decoder, and feedforward neural network, each described in

the next sections. For all three decoders, the predictor was a population activity matrix (T trials 3 M neurons) and the output was a

history bias vector estimated from the full model (T trials3 1). Each row of the population activity matrix corresponds to a single trial
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population activity vector, each element corresponding to a single neuron’s time-averaged activity during the 4 s ITI. We used the

same measure of performance in all decoders; the correlation coefficient between the actual and decoded biases of test trials

(10-fold cross-validation). To compare decoding performance among PPC-STR, PPC-pM2, and unlabeled neuron groups while

matching the population size (M), we performed a neuron dropping curve analysis (Figure 4J; Figure S3). In each session with at least

20 neurons, the subsample size decreased from 20 to 1. At each subsample size, we randomly subsampled neurons in a given ses-

sion and performed decoding analyses 100 times, and computed the mean decoding performance across 100 samples. We always

imaged more than 20 unlabeled neurons, so all 51 sessions were analyzed for the unlabeled group. However, we imaged at least 20

projection neurons only in 25/26 sessions that imaged PPC-STR neurons, and 10/25 sessions that imaged PPC-pM2 neurons, and

only these sessions were included in the projection group analysis.

Lasso regression

The following linear equation was used to decode history bias.

History biasðNÞ =
XM
k = 1

wk$ITI activity of neuronkðNÞ+wo (Equation 6)

The weights were obtained using training trials by minimizing the following cost function, which penalized both the mean squared

error of the fit and the L1 norm of the weights.

1

2T

XT
N=1

 
History biasðNÞ �

XM
k = 1

wk$ITI activity of neuronkðNÞ �wo

!2

+ l
XM
k =1

jwk j

A regularization coefficient, l, was selected from a grid search such that it minimizes themean squared error of the cross-validated fit.

Bayesian decoder

We implemented a Naive Bayes decoder using the maximum a posteriori estimate based on the following formula (Glaser

et al., 2017).

pðHistory biasðNÞ j ITI population activityðNÞÞ = pðITI population activityðNÞ jHistory biasðNÞÞ$pðHistory biasðNÞÞ
pðITI population activityðNÞÞ

To estimate probability functions on the right side of the above equation, we discretized history bias using 10 uniformly spaced bins,

and ITI activity of each neuron using 30 uniformly spaced bins. We assumed that the conditional probability of each neuron is inde-

pendent from the other neurons so that we could simplify the conditional probability as follows:

pðITI population activityðNÞ jHistory biasðNÞÞ =
YM
k = 1

pðITI activity of neuronkðNÞ jHistory biasðNÞÞ

Wealso assumed that each conditional probability is Gaussian so that we could infer the probability to observe the neural activity on a

test trial, using the mean and the standard deviation estimated from training trials.

Feedforward neural network decoder

Weused a neural network consisting of an input layer, a hidden layer with 10 nodes, and an output layer (Hattori et al., 2019). The input

layer encoded the ITI population activity, and the output layer encoded the history bias. The hidden layer nodes computed the

weighted sum of inputs and transformed it through a sigmoid transfer function. The output layer computes the weighted sum of

the outputs of the hidden layer. The weights in the network was optimized from training trials using MATLAB function train with

the option, Bayesian regularization.

Multiple linear regression

We used a MATLAB function regress to perform a multiple linear regression on the average activity during the 4 s ITI of each neuron

using two sets of predictors. In one set, we used the upcoming choice and the history bias as predictors. In the other set, we used the

upcoming choice and three separable bias terms in Equation 3, i.e., outcome history bias, choice history bias, and outcome-choice

interaction history bias. If the weight of a given predictor is significantly different from zero (p < 0.05), we declared that the ITI activity

of the neuron showed a significant weight for the predictor.

Soma inactivation experiment
Mice for inactivation experiments (WTC57BL/6 or Rosa26-CAG-LSL-tdTomato; n = 15) were implanted with a head-fixation bar. In 7

mice, CAV-Cre was bilaterally injected in STR (150 nL per hemisphere) through bur holes. In 8 mice, CAV-Cre was bilaterally injected

in pM2 (100 nL per hemisphere) through bur holes. In all mice, craniotomies were performed over PPC bilaterally and virus encoding

Cre-dependent halorhodopsin (AAV9-EF1a-DIO-eNpHR3.0-eYFP, UPenn Vector Core; 250-750 mm beneath the dura; 100 nL per

hemisphere) was injected bilaterally. The craniotomies were covered with an optical window. After the surgery and recovery, we

trained mice to perform the task over a period of 2-4 months.

Once the mouse’s fraction of correct choice reached 60%, we conducted 1-7 light acclimation sessions to minimize non-specific

light effects on behaviors. In the acclimation sessions, the distal ends of a bifurcated fiber-optic patch cord (490 mm diameter, Doric)
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were placed �2 mm above the head-fixation bar, away from PPC expressing halorhodopsin, and laser light (532 nm, 15-20 mW in

each fiber, SLOC) was applied during the ITI of randomly selected 15%of trials. Mostmice recovered their previous task performance

within 1-2 days.

Each mouse performed both inactivation and headbar control sessions that were randomly interleaved across 7 - 12 daily ses-

sions. In headbar control sessions, the patch cord ends were directed above the head-fixation bar, whereas in inactivation sessions

they were placed directly above PPC in both hemispheres (Figure 5B). Except for this difference, all procedures were identical be-

tween headbar control and inactivation sessions. In both control and inactivation sessions, the green light was delivered in approx-

imately 15% of randomly selected trials.

PPC-STR terminal inactivation experiment
The mice (WT C57BL/6 or Rosa26-CAG-LSL-tdTomato; n = 13) were implanted with a head-fixation bar and bilaterally injected with

CAV-Cre in STR and Cre-dependent halorhodopsin in PPC in the same way as the PPC-STR soma inactivation experiment. After the

surgery and recovery, we trained mice to perform the task over a period of 2-4 months. Once the mouse’s fraction of correct choice

reached 60%,we bilaterally implanted fiber optic cannulae (200 mmcore, 0.37 NA, 1.25mmstainless steel ferrule; Newdoon) approx-

imately 300 mm above the STR regions receiving dense projections from PPC (2.2 mm lateral, 0.8 mm posterior to bregma, 2 mm

beneath the dura), and secured them to the skull using dental cement. After mice recovered their previous task performance (within

1-2 days), we performed inactivation for 2-5 days. In each inactivation session, the green laser light (532 nm, 10-15 mW for inacti-

vation in each fiber, SLOC) was delivered in approximately 15% of randomly selected trials. After a mouse completed the terminal

inactivation experiment, we perfused themouse and checked an expression of halorhodopsin in PPC post hoc. We analyzed only the

mice with clear expression in both hemispheres (n = 7).

As a control for opsin-independent non-specific effects of laser illumination in STR, such as heating (Owen et al., 2019), we per-

formed an analogous experiment to the terminal inactivation in a separate set of mice (n = 6) in which we injected Cre-dependent

eGFP (AAV1-CAG-FLEX-eGFP, UPenn Vector Core) in PPC instead of the Cre-dependent halorhodopsin.

Movement analysis
We defined movement onset as the first time after the go cue at which the joystick velocity exceeded 20 mm/sec continuously for

20 ms and the joystick moved at least 1.1 mm from the origin. Target entry was the time the joystick entered one of the two targets

that were placed in two orthogonal directions (forward versus downward) from the origin, at a distance of at least 6 mm.

Trial-to-trial trajectory correlation

For every pair of trials that entered the same target (forward or downward), we computed the Pearson’s correlation coefficient be-

tween the two joystick traces (the concatenated x and y position time series). The correlation coefficients computed separately for

forward and downward trials were averaged. The time window for the trajectory correlation analysis was chosen to approximate the

period frommovement onset to target entry (0.2 ± 0.12 s, mean ± SEM across 30 mice). Inactivation effects on trial-to-trial trajectory

correlations were similar across a range of time windows between movement onset and 0.2 to 0.45 s frommovement onset, and we

present the data using a 0.2 s window.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details including the type of test, number of samples, p values are provided in the figures, figure legends or text. In general,

we performed hypothesis tests using non-parametric bootstrap (Stout et al., 1999). In the case of bootstrap two-sample (BTS) tests

that compared the means of two independent groups (mgroup1 and mgroup2), we computed the null distribution for a difference in two

group means under the null hypothesis that the two groups have the same means. To do so, we first removed the mean difference in

the two groups by adding (mgroup1 - mgroup2) to all data in group2, and then bootstrapped the mean of each group 10,000 times. If the

originally observed difference (mgroup1 - mgroup2) was outside the 95% confidence interval of the mean (i.e., 2.5 to 97.5th percentile in

the null distribution), the null hypothesis was rejected. In the case of bootstrap paired-sample (BPS) tests, we first created single-

group data that consist of differences in each pair and tested whether the mean of the differences (D) is significantly different

from zero. To compute the null distribution, we first subtracted D from all differences and bootstrapped the mean 10,000 times. If

the 95% confidence interval from the null distribution did not include D, the originally observed mean, we rejected the null hypothesis

that the mean difference is zero.

DATA AND CODE AVAILABILITY

The datasets and code supporting the current study have not been deposited in a public repository, but are available from the cor-

responding authors on request.
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