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SUMMARY

Brain-computer interfaces have seen an increase in
popularity due to their potential for direct neuropros-
thetic applications for amputees and disabled indi-
viduals. Supporting this promise, animals—including
humans—can learn even arbitrary mapping between
the activity of cortical neurons and movement of
prosthetic devices [1–4]. However, the performance
of neuroprosthetic device control has been nowhere
near that of limb control in healthy individuals, pre-
senting a dire need to improve the performance.
One potential limitation is the fact that previous
work has not distinguished diverse cell types in the
neocortex, even though different cell types possess
distinct functions in cortical computations [5–7] and
likely distinct capacities to control brain-computer
interfaces. Here, we made a first step in addressing
this issue by tracking the plastic changes of
three major types of cortical inhibitory neurons (INs)
during a neuron-pair operant conditioning task using
two-photon imaging of IN subtypes expressing
GCaMP6f. Mice were rewarded when the activity of
the positive target neuron (N+) exceeded that of the
negative target neuron (N�) beyond a set threshold.
Mice improved performance with all subtypes, but
the strategies were subtype specific. When parval-
bumin (PV)-expressing INswere targeted, the activity
of N� decreased. However, targeting of somato-
statin (SOM)- and vasoactive intestinal peptide
(VIP)-expressing INs led to an increase of the N+
activity. These results demonstrate that INs can be
individually modulated in a subtype-specific manner
and highlight the versatility of neural circuits in
adapting to new demands by using cell-type-specific
strategies.

RESULTS AND DISCUSSION

Water-restricted mice expressing GCaMP6f in parvalbumin

(PV)-, somatostatin (SOM)-, or vasoactive intestinal peptide
C

(VIP)-expressing inhibitory neurons (INs) were trained in a

neuron-pair operant conditioning task with two-photon calcium

imaging (modified from [8]). Briefly, two neurons in layer 2/3 of

the primary motor cortex were randomly selected out of those

that met predetermined activity criteria (STAR Methods) and

designated as positive target neuron (N+) and negative target

neuron (N�). In some of the imaging fields (14/36), there were

only two labeled neurons that met the activity criteria. The dis-

tance between N+ and N� was 191 ± 119 mm (mean ± SD;

n = 36 pairs). The calcium signal of the targeted neurons was

not saturated (Figures S1A–S1C). Mice were rewarded when

the calcium activity of N+ exceeded that of N� by a set

threshold (Figure 1A). The reward contingency based on the

difference between N+ and N� activity ensured that mice could

not solve the task by simply activating all neurons in the area

simultaneously. During the trial, the difference of the calcium

signal of the two neurons was transformed to create a dynam-

ically frequency-modulated auditory feedback. After each

reward, the activity of the targeted neurons had to return to

baseline, which resumed the auditory feedback and initiated

the next trial. The same neurons were targeted over 4–6 ses-

sions, one session per day, with the same reward contingency.

We note that a previous study with a similar approach that tar-

geted neurons of unidentified cell types showed that auditory

feedback was essential for the learning of the task [8]. How-

ever, in the current study, we did not explicitly test the neces-

sity of the auditory feedback.

For each of the three major IN types, mice were able to

improve the performance over sessions, significantly increasing

the reward frequency (PV-INs, p = 0.011, n = 48 sessions, 10

imaging fields in 5 mice, using fitlme in MATLAB hereafter unless

otherwise stated; SOM-INs, p = 0.001, 50 sessions, 10 imaging

fields in 5 mice; VIP-INs, p = 0.017, 82 sessions, 16 imaging

fields in 8 mice; Figures 1B–1D). Immunostaining showed a

high degree of overlap between GCaMP6f-expressing and

PV-expressing neurons in PV animals and little overlap between

GCaMP6f-expressing and PV-expressing neurons in SOM and

VIP animals (Figures 1E–1G). In a subset of the animals, we

imaged the same neurons for an additional 1–3 contingency

degradation sessions, in which rewards were provided

without regard to the activity of the targeted neurons. In these

sessions, the targeted neurons reached the reward threshold

significantly less frequently (the difference between the contin-

gency degradation sessions and the last two training sessions,

2.49 ± 0.64/min [estimate ± SE; p < 0.001; n = 12 and 14
urrent Biology 28, 77–83, January 8, 2018 ª 2017 Elsevier Ltd. 77
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Figure 1. Mice Improved Performance in a

Neuron-Pair Operant Conditioning Task with IN

Subtypes

(A) Schematic of task. D, N+-N�.

(B–D) Reward frequency, adjusted for chance-level per-

formance during pre-task period in each session, across

4–6 sessions in PV (B; 0.44 ± 0.17 [slope estimate ± SE];

n = 48 sessions; 10 fields in 5 mice; using fitlme in

MATLAB), SOM (C; 0.81 ± 0.24; 50 sessions; 10 fields in

5 mice), and VIP mice (D; 0.35 ± 0.14; 82 sessions;

16 fields in 8 mice). Thick lines, linear fit; thin lines, each

imaging field.

(E) Example PV (red) and GCaMP6f (green) labeling in PV

animals. In total, among 309 GCaMP6f-positive cells and

289 PV-antibody-stained cells, 279 were double positive.

(F) Same as (E) in SOM animals. Among 196 GCaMP6f-

positive cells and 176 PV-antibody-stained cells, only 7

were double positive.

(G) Same as (E) in VIP animals. Among 164 GCaMP6f-

positive cells and 202 PV-antibody-stained cells, only 4

were double positive.

See also Figure S1.
sessions; 7 imaging fields in 4 mice], 3.07 ± 0.71/min [p < 0.001;

n = 20 and 20 sessions; 10 imaging fields in 5 mice], and 1.08 ±

0.38/min [p = 0.006; n = 28 and 30 sessions; 15 imaging fields in

7mice] in PV, SOM, and VIP animals, respectively). These results

indicate that mice are indeed able to modulate the activity of IN

subtypes.

We considered three possible strategies by which mice could

achieve an increase in reward frequency (Figure 2A). For

example, the reward frequency could increase with an increase

in the activity frequency of N+ (Figure 2A; ‘‘N+ increase’’). Alter-

natively, a decrease in the activity of N� (Figure 2A;

‘‘N� decrease’’) or decoupling of activity between N+ and N�
(Figure 2A; ‘‘decoupling’’) can improve the reward frequency

by increasing the chance that activity in N+ leads to a reward.

In the following analysis, we focused on the frequency of calcium
78 Current Biology 28, 77–83, January 8, 2018
events because the amplitude of the events did

not significantly change across sessions (Fig-

ures S1D–S1F).

When PV-INs were targeted (Figure 2B), the

frequency of N+ calcium events did not

change significantly, arguing against the N+

increase strategy (Figure 2C). In contrast, the

frequency of N� calcium events decreased

(p = 0.002), supporting the N� decrease strat-

egy (Figure 2D). The slopes of the changes

of N+ activity (Figure 2C) and N� activity (Fig-

ure 2D) were significantly different (p = 0.001),

indicating the specificity of the decrease of N�
activity. Accordingly, the frequency of the N+

calcium events that did not lead to a reward

decreased (p = 0.025; Figure 2E). The fre-

quency of N� events during the time

periods when N+ was inactive also signifi-

cantly decreased over sessions (p = 0.011;

Figure 2F). This result argues against the de-

coupling strategy, which would predict that

N� events that originally coincided with N+
activity would move into the periods of N+ inactivity. Further-

more, the correlation coefficient between N+ and N� activity

during task period did not decrease across sessions (slope

estimate ± SE = 0.0145 ± 0.0089/session; p = 0.112). To test

whether the changes of neural activity contribute to the

improvement in task performance, we conducted mediation

analysis [9]. In this analysis, we found that N+ activity and

N� activity were positively and negatively correlated with task

performance, respectively (coefficients of a linear model:

0.57 ± 0.06 [p < 0.001] and �0.22 ± 0.06 [p < 0.001;

estimate ± SE]), and there was a significant mediation effect

with N� activity decrease (p < 0.001; STAR Methods) and not

with N+ activity (p = 0.233). These results indicate that, when

PV-INs were targeted, mice specifically decreased the activity

of N� while maintaining N+ activity.
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Figure 2. Neural Activity Modulation during

PV-IN Targeting

(A) Schematic of three potential strategies to ach-

ieve the task.

(B) Example activity traces of N+ and N�, activity

difference (D), auditory feedback, and reward timing

in the first (top) and the last (bottom) session of a PV

mouse.

(C–F) Daily changes of the frequency of N+ peaks

(C; 0.26 ± 0.2 [slope estimate ± SE]; n = 48 sessions;

10 fields in 5 mice; using fitlme in MATLAB), N�
peaks (D; �0.68 ± 0.22), N+ peaks that were

not associated with rewards (E; �0.39 ± 0.17), and

N� peaks during the periods of N+ inactivity

(F; �0.47 ± 0.18) during PV-IN targeting, relative to

pre-task period.
The task improvement in mice with SOM-IN targeting (Fig-

ure 3A) involved a different strategy. In contrast to PV-INs, N+

event frequency increased in the later sessions in SOM-INs

(p= 0.003; Figure 3B). This suggests that theN+ increase strategy

was utilized to perform the task. Conversely, the frequency of N�
events did not change (Figure 3C), nor did the frequency of N+

events that were not associatedwith rewards (Figure 3D), arguing

against the N� decrease hypothesis. The slopes of the activity

changes of N+ (Figure 3B) and N� (Figure 3C) were significantly

different (p=0.010).Furthermore, the frequencyofN�eventsdur-

ing the periodsofN+ inactivity did not increase (Figure 3E) and the

correlation coefficient between N+ and N� activity during task

period did not significantly decrease across sessions (slope

estimate ± SE =�0.0009 ± 0.0119/session; p = 0.939), discount-

ing the decoupling strategy. In themediation analysis, N+ andN�
activities were positively and negatively correlated with task per-

formance, respectively (coefficients of a linear model: 0.60 ± 0.03

[p < 0.001] and �0.06 ± 0.02 [p = 0.018; estimate ± SE]), and the

mediation effect through N+ activity was significant (p = 0.003)

and not through N� activity (p = 0.082). We conclude that mice

improved the task performance with SOM-INs primarily by acti-

vating specifically the N+ neuron.

Next, we investigated VIP-INs (Figure 3F). As with SOM-INs,

in VIP mice, the event frequency of N+ significantly increased
Cu
(p = 0.044; Figure 3G). Neither the fre-

quency of N� events nor the N+ event

frequency not associated with reward

changed significantly (Figures 3H and 3I),

arguing against the N� decrease strategy,

although the difference in the slopes of ac-

tivity changes of N+ (Figure 3G) and N�
(Figure 3H) did not reach statistical signifi-

cance (p = 0.101). The N� event frequency

within the periods of N+ inactivity did not

change (Figure 3J), and the correlation co-

efficient between N+ and N� activity dur-

ing task period did not change (slope

estimate ± SE = �0.0103 ± 0.0091/

session; p = 0.261), excluding the decou-

pling strategy. N+ and N� activity were

positively and negatively correlated with

task performance, respectively (coeffi-
cients of a linear model: 0.70 ± 0.03 [p < 0.001] and �0.10 ±

0.04 [p = 0.011; estimate ± SE]), and themediation effect through

N+ activity was significant (p = 0.040). These data demonstrate

that VIP mice improved the task performance by increasing N+

activity.

To test whether the difference between cell types was

significant, we examined whether cell type had a significant

effect on the slope of the linear model (STAR Methods;

Figures 4A–4D). The reward frequency increase was not

different among three cell types. The frequency increase of

N+ peaks was significantly larger in SOM neurons than in

PV and VIP neurons. The decrease of N� peak frequency

was greater in PV neurons than in VIP neurons, and the

decrease of the frequency of N+ peaks without rewards was

specific to PV.

For SOM and VIP mice, we further investigated whether

N+/N� activity changed differently from the activity of non-

target neurons, which met the same activity criteria. We did

not perform this analysis for PV mice because 6 out of 10

imaging fields did not have any non-target neuron that

met the activity criteria and the other 4 fields only had 1 non-

target neuron. The result shows that N+ activity increase in

SOM animals was specific to N+ and significantly greater

than the non-target neurons (slope difference from non-target
rrent Biology 28, 77–83, January 8, 2018 79
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Figure 3. Neural Activity Modulation during

SOM-IN and VIP-IN Targeting

(A) Example activity traces of N+ and N�, activity

difference (D), auditory feedback, and reward timing

in the first (top) and the last (bottom) session of a

SOM mouse.

(B–E) Daily changes of the frequency of N+ peaks

(B; 1.21 ± 0.39 [slope estimate ± SE]; n = 50 ses-

sions; 10 fields in 5 mice; using fitlme in MATLAB),

N� peaks (C; 0.84 ± 0.51), N+ peaks that were

not associated with rewards (D; 0.22 ± 0.16), and

N� peaks during the periods of N+ inactivity

(E; �0.97 ± 0.50) during SOM-IN targeting, relative

to pre-task period.

(F) Same as (A) for a VIP mouse.

(G–J) Same as (B)–(E) for VIP-INs (n = 82 sessions;

16 fields in 8 mice). Slope estimates ± SE are

0.40 ± 0.20 (G), 0.02 ± 0.21 (H), 0.04 ± 0.09 (I), and

0.09 ± 0.18 (J).
neurons: 1.81 ± 0.73 [p = 0.014; SOM; N+; Figure 4E], �0.68 ±

0.77 [p = 0.376; SOM; N�; Figure 4F], 0.43 ± 0.41 [p = 0.304;

VIP; N+; Figure 4E] and �0.12 ± 0.42 [p = 0.770; VIP; N�; Fig-

ure 4F; estimate ± SE]). In addition, we simulated reward fre-

quency increase as if each non-target neuron were used in

the task as either N+ or N�, and the actual target neuron

was used for the other target (for example, in a simulation in

which we used a non-target neuron as N+, reward frequency

was simulated using that non-target neuron as N+ and the

actual N�). Figure 4G shows that the simulated reward fre-

quency increase with non-target neurons used as N+ is signif-
80 Current Biology 28, 77–83, January 8, 2018
icantly lower than the actual reward

frequency increase in SOM neurons, but

not in VIP neurons. The reward frequency

increase was not affected in either SOM

or VIP animals when non-target neurons

were used as N� (Figure 4H). The results

show that the activity increase in SOM an-

imals was specific to N+, leading to

improved task performance.

To our knowledge, this is the first study

to test the plasticity of individual neurons

of molecularly identified cell types in a

brain-computer interface task. We demon-

strate that cell type has a profound

impact on the way by which performance

improvement is achieved. For example,

the activity of a SOM-IN could be

increased without activating a second

SOM-IN, similarly to a previous study that

did not identify the cell type of the targeted

neurons (and thus most of the targeted

neurons were presumably excitatory) [8].

However, we found no evidence that the

activity of a PV-IN could be increased

without also activating a second PV-IN.

Instead, the activity of a PV-IN could be

reduced without inactivating a second

PV-IN. The performance of brain-machine
interfaces may improve in the future if such cell-type-specific

constraints on plasticity are considered [10].

The differences in baseline activity levels may have partially

contributed to the difference in strategies among subtypes.

For example, if the baseline activity level of PV neurons is

higher, it might be more difficult to increase N+ activity in

PV-INs than in other subtypes. In addition, due to different cal-

cium buffering in each cell, the relationship between spikes and

GCaMP6f signals may be different from cell to cell, leaving the

possibility for PV neurons to require more spikes to cause a

calcium event.
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Figure 4. Difference between Cell Types in

Neural Activity Modulation

(A–D) Difference between cell types in the slopes of

the linear model. The frequency of rewards (A), N+

peaks (B), N� peaks (C), and N+ peaks that were

not associated with rewards (D) is shown.

(E and F) Difference between activity increase of

target neurons (N+ [E] and N� [F]) and that of non-

target neurons (NNT).

(G and H) Difference between actual reward fre-

quency increase and simulated reward frequency

increase if activity of non-target neurons was used

instead of N+ (G) or N� (H). Bar plot and error

bars indicate slope estimates ± SE (*p < 0.05;

**p < 0.01). * and ** between bars indicate a signif-

icant interaction term of a linear model (*p < 0.05;

**p < 0.01). In (E)–(H), only imaging fields that had

non-target neurons were included in the analysis.

See also Figure S2.
Alternatively, the cell-type-specific strategies may be partially

explained by the differences in the levels of activity correlation

within each cell type (pairwise correlation coefficients of pre-

task activity between candidate neurons were PV, 0.61 ± 0.84

[npair = 18]; SOM, 0.14 ± 0.03 [npair = 40]; and VIP, 0.31 ± 0.01

[npair = 394]; mean ± SEM; p < 0.001 for all pairwise comparisons

after removing the effect of event rate; Figure S2). Nevertheless,

we argue that the difference in correlation is an important reflec-

tion of their intrinsic properties.

The ability to improve task performance with PV-INs is partic-

ularly striking, given the high activity correlation between PV-INs.

It has been shown that neural feedback tasks based on the dif-

ference of two neural ensembles is harder to learn if the activity

of the two ensembles is correlated [8]. However, the animals

could perform the task with a specific strategy.

What could be the potential mechanisms underlying cell-type

specificity of strategies? At the cellular level, the performance of

this task could be mediated by specific plasticity of N+ and/or

N� neurons, such as plasticity of intrinsic excitability and synap-

tic plasticity of inhibitory and excitatory synapses onto these

neurons. There are likely differences among cell types in their

ability for these plasticity mechanisms (reviewed in [11]). For

example, repetitive correlated spiking induced spike-timing-

dependent plasticity (STDP) in low-threshold spiking (LTS) inter-

neurons (putative non-PV INs) [12], whereas it induced long-term

depression in fast spiking interneurons (putative PV-INs) [12, 13].

If excitatory synapses onto PV neurons are less likely to be

potentiated when the neurons are targeted in the operant condi-

tioning task, it can explain why the N� decrease strategy was

employed with PV-INs. However, it has been shown that long-

term potentiation can be induced in PV-INs with theta burst

stimulation [14], and synaptic plasticity is sensitive to the neuro-

modulatory state of the circuit [15] and behavioral context

[16, 17]. Therefore, it remains unclear how the capacities for

synaptic plasticity may differ across cell types in the intact brain

during learning.
Another potential mechanism for the improved performance in

the current task is by modulating the activity of neurons presyn-

aptic to the targeted neurons. Different subtypes of inhibitory

neurons receive inputs from different populations of excitatory

neurons. PV-INs receive dense inputs from nearby excitatory

neurons [18], which suggests that nearby PV-INs share similar

excitatory inputs and thus a specific increase of excitatory inputs

to one PV-IN may be difficult. On the other hand, SOM- and

VIP-INs receive excitatory inputs from largely non-overlapping

populations [19]. Differences in the strategy for the operant con-

ditioning task may originate from the differences in the charac-

teristics of the neurons providing excitatory inputs to the target

neurons.

In addition, excitatory and inhibitory neurons form highly

interconnected networks. In general, it is thought that VIP-INs

inhibit SOM-INs; SOM-INs inhibit excitatory, PV-, and VIP-INs;

PV-INs inhibit PV-INs and excitatory neurons [6]; and excit-

atory neurons project to all four types. These connectivity pat-

terns provide many possible pathways that could mediate the

plasticity observed in the current study. For example, for

SOM-INs, SOM / PV / excitatory / SOM provides a po-

tential positive feedback loop, possibly underlying the increase

of N+ activity in SOM-INs. Furthermore, the SOM / PV inhi-

bition could underlie the decrease of N� activity in PV-INs.

Future experiments are required to test these specific

possibilities.

Finally, the activity of the inhibitory neurons can be associ-

ated with movements and sensory stimulus in a subtype-

specific manner. A study showed that monkeys perform a

brain-machine interface task by exploring and exploiting

neural patterns associated with natural movements [20].

Through our visual observations, we did not identify overt

behavioral strategies during task performance, similar to a pre-

vious study [8]. Nevertheless, examining the relationship be-

tween existing neural activity patterns and behavioral variables

(‘‘intrinsic neural manifold’’ and ‘‘intrinsic behavioral manifold’’)
Current Biology 28, 77–83, January 8, 2018 81



[21] before training and how they change through training in

each subtype will be of future interest. Furthermore, studies

using neural feedback task with two-photon calcium imaging

have reported that auditory [8] or artificial sensory [22] feed-

back was necessary for the successful learning of the task,

whereas similar learning only with rewards as a feedback

has also been reported [23]. Future experiments can be aimed

at examining whether sensory feedback was necessary to

learn to modulate inhibitory neurons and, if so, how the depen-

dency is different among cell types. Lastly, we note that our

contingency degradation experiments suggest that the behav-

ioral performance was goal directed. However, the lack of

auditory feedback in the degradation experiments leaves

room for other interpretations, such as that the mice might

have been in a completely different behavioral state without

the feedback. It will be of future interest to investigate the re-

lationships between targeted cell types and behavioral strate-

gies, dependence on sensory feedback, and whether the

behavioral performance is goal directed.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-PV Abcam Cat#ab11427; RRID: AB_298032

Chicken anti-GFP Aves Labs Cat#GFP-1020; RRID: AB_10000240

Goat anti-chicken DyLight 488 Thermo Fisher Scientific Cat#SA5-10070; RRID: AB_2556650

Donkey anti-rabbit Alexa 594 Thermo Fisher Scientific Cat#A-21207; RRID: AB_141637

Experimental Models: Organisms/Strains

PV-Cre The Jackson Laboratory RRID: IMSR_JAX:017320

SOM-Cre The Jackson Laboratory RRID: IMSR_JAX:013044

VIP-Cre The Jackson Laboratory RRID: IMSR_JAX:010908

lsl-GCaMP6F The Jackson Laboratory RRID: IMSR_JAX:024105

VIP-Cre::ZtTA::TITL-GCaMP6f The Jackson Laboratory RRID: IMSR_JAX:024107

Software and Algorithms

ScanImage 4 Vidrio Technologies RRID: SCR_014307

MATLAB R2014a The MathWorks RRID: SCR_001622
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Takaki

Komiyama (tkomiyama@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All procedures were in accordance with protocols approved by UCSD Institutional Animal Care and Use Committee and guidelines of

the US National Institutes of Health. All animals before water restriction were group housed, and during water restriction they were

singly housed or group housed when all littermates were under water restriction. They were housed in disposable plastic cages with

standard bedding in a room on a reversed light cycle (12h/12h). Experiments were typically performed during the dark period. With

mice acquired from Jackson Laboratories, we generated double transgenic mice, PV-Cre [JAX:017320] [24]::lsl-GCaMP6f

[JAX:024105] [25], SOM-Cre [JAX:013044] [26]::lsl-GCaMP6f, VIP-Cre [JAX:010908] [26]::lsl-GCaMP6f, and triple transgenic mice

VIP-Cre::ZtTA::TITL-GCaMP6f [JAX:024107] [25] to express the calcium indicator GCaMP6f in a specific subtype of inhibitory

neurons. Each line was maintained in the original background and crossed to generate the double or triple transgenic mice for

experiments. Double transgenic and triple transgenic mice expressing GCaMP6f in VIP-INs had similar expression levels and the

results were combined. Average body weight at the beginning of the first session was 21.5 ± 1.3 g (PV, n = 9), 21.8 ± 4.1 g

(SOM, n = 10), and 20.2 ± 2.9 g (VIP, n = 16) (mean ± SD).

METHOD DETAILS

Immunostaining and cell counting
30 mm-thick motor cortex coronal sections were prepared with a microtome (Thermo Fisher) and blocked with 10% normal goat

serum, 1% bovine serum albumin and 0.3% Triton X-100 in PBS for 1 hr at room temperature. Immunostaining was then performed

with 24-hr primary antibody incubation at 4�C (anti-PV (rabbit, ab11427, abcam), 1:1000; anti-GFP (chicken, GFP-1020, Aves),

1:1000, diluted in PBS with 3% normal goat serum) and 2-hr secondary antibody incubation at room temperature (anti-chicken

DyLight 488 (goat, SA5-10070, Thermo Fisher), 1:1000; anti-rabbit Alexa 594 (donkey, A-21207, Thermo Fisher), 1:1000, diluted in

PBS). Stained sections were mounted with CC/Mount mounting medium (Diagnostic BioSystems) and imaged with Apotome.2

(ZEISS). PV and GCaMP6f quantification was performed manually using ImageJ. Representative sections (3 for each animal) were

chosen, and in each section, one rectangle area (880 mm3 680 mm) was selected for counting. We were not able to achieve reliable
e1 Current Biology 28, 77–83.e1–e4, January 8, 2018
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labeling with SOM and VIP antibodies (T-4103 rabbit anti-Somatostatin-14 antibody (Peninsula Laboratories International, Inc.),

366004 guinea pig anti-somatostatin-28 antibody (Synaptic Systems) and 20077 rabbit anti-VIP antibody (Immunostar), all in a variety

of conditions).

Surgery
Surgical procedures were performed as previously described [27]. Adult mice (6 weeks or older, male and female) were anesthetized

with isoflurane and injectedwith Baytril (10mg/kg), dexamethasone (2mg/kg) and buprenorphine (0.1mg/kg) subcutaneously to pre-

vent infection, inflammation, and discomfort. A custom head-plate was glued and cemented to the skull. Craniotomy (�3 mm) was

performed over the right caudal forelimb area (300 mm anterior and 1,500 mm lateral from the bregma). Experiments were performed

at least 7 days after surgery.

Imaging
Imaging was conducted with a commercial two-photon microscope (Bscope, Thorlabs) running Scanimage using a 16x objective

(NIKON) with excitation at 925 nm (Ti-Sa laser, Newport). Imaging was conducted in awake animals. For calcium imaging, images

(512 3 512 pixels covering 472 3 508 mm) were recorded continuously at 28 Hz. Before each session, images at 3 different planes

(10 mm step in z axis) were acquired as a reference. When ROIs were pre-defined in the previous session, it was warped with

enhanced correlation coefficient maximization algorithm [28] using the reference image. ROIs were not updated during imaging.

During the task, each frame was transferred to another MATLAB instance, and lateral motion was corrected by locally maximizing

correlation coefficient to the reference image with gradient descent and processed for neural feedback. It was implemented with

a custom MATLAB executable written in C++. Slow lateral and vertical drifts were detected by comparing correlation coefficients

of the average of 200 motion corrected frames to the reference images and automatically corrected throughout imaging sessions.

Behavioral task
Before starting the neuron-pair operant conditioning task, mice first underwent 1 – 4 lick sessions when they received water drops at

random intervals. These sessions allowed mice to get acclimated to the environment, and the data from calcium imaging in these

sessions were used to select the target neurons. ROIs were manually selected to include the soma of neurons with at least one

apparent activity event during the session. For real-time neuron-pair operant conditioning, time-varying baseline of fluorescence

signal of each ROI is defined as the 8th percentile of the Savitzky–Golay filtered (order = 2, length = 9) fluorescence intensity in

the preceding 200 frames. The baseline was used to calculate DF/F, which was then filtered by taking 15-frame moving average.

Fluorescence in the background pixels (defined as all the pixels more than 2 pixels away from any ROI and also more than 32 pixels

away from the border of the reference image) was averaged and the background DF/F was subtracted from DF/F of each

ROI to compensate for neuropil contamination. Among candidate ROIs whose DF/F exceeded 0.4 at a rate between 1.5 / min to

15 / min, two were randomly selected as target ROIs (N+ and N-) for neuron-pair operant conditioning task. A threshold for

the task was determined so that the simulated reward frequency using the calcium activity during lick sessions is approximately

4 / min (threshold was 0.52 ± 0.27, mean ± SD). Mice were then trained to modulate the activity of the target neurons with auditory

feedback (adapted from [8]). The 15-frame rolling average of the difference of DF/F of N+ and N- was exponentially transformed to

auditory frequency between 1 kHz and 16 kHz. 4 kHz indicates the same DF/F between N+ and N-, and 16 kHz indicates it reached

the threshold. The delay caused by image acquisition and processing was 130 ± 33 ms (mean ± S.D., n = 40000 frames from one

session). Mice were given a water reward (�10 ml) when the auditory frequency reached 16 kHz, and the sound was kept at

16 kHz for 850 ms to indicate a reward delivery (reward tone). This is followed by inter-trial intervals (ITIs) without auditory feedback,

which continued until the difference of DF/F became smaller than 0.3 times the reward threshold for the first time after 850 ms. In

neuron-pair operant conditioning sessions, imaging was performed for 6 min first without auditory feedback which served as the

pre-task period. After the pre-task period, the task with auditory feedback was initiated. Behavioral sessions continued up to

50 mins or until the mice appeared disengaged from the task, e.g., not responding to available water rewards, and it was manually

determined by the experimenter. During the task, the animals were monitored online by the experimenter using IR camera, and most

animals showed little to no overt movements during successful trials. After 4-6 sessions of operant conditioning, a subset of mice

underwent 1-3 post-operant-conditioning contingency degradation sessions. In these sessions, reward and reward tone were given

at the same intervals as in the last two days of neuron-pair operant conditioning sessions without auditory feedback. In some cases

the image quality degraded over the sessions, in which case the experiments were terminated and data were excluded. Only the

experiments that had at least 5 imaging sessions including both neuron-pair operant conditioning and post-operant-conditioning

contingency degradation sessions were included in the analysis. Somemice were trained consecutively with multiple imaging fields.

QUANTIFICATION AND STATISTICAL ANALYSES

Data analysis
Data analysis was performed using MATLAB R2014a.

Task-induced reward frequency

Instead of choosing threshold based on pre-task activity of each session as in [8], we used the same threshold over multiple sessions.

Task-induced reward frequency change was calculated by taking the reward frequency between 3 and 9 mins after initiation of the
Current Biology 28, 77–83.e1–e4, January 8, 2018 e2



task, and subtracting the simulated reward frequency during the pre-task period. We chose this time windows because it was when

mice were considered to be engaged in the task inmost sessions, and themain results were not sensitive to the choice of the analysis

time window (Figure S3). The simulated performance during the pre-task period did not change over time (Figure S4).

Task-induced neural activity

To delineate the strategies underlying the performance improvement in neuron-pair operant conditioning, in post hoc analysis, we

computed the frequency of N+ peaks, N- peaks, N+ peaks not associated with rewards, and N- peaks during N+ inactivity. Calcium

signal was considered as a peak if DF/F is the largest within the surrounding 1 s window and larger than the fluorescence baseline

(corrected as below) by the reward threshold used for the neuron-pair operant conditioning task. Peak frequency was calculated

during the time periods when the sound feedback was provided and the first 850 ms after that the sound feedback turned off after

each reward. 850 ms was added to accommodate for the time that the fluorescence reaches a peak after exceeding the threshold.

N+ peaks were considered associated with a reward if criteria reward was delivered within 1 s window centered at the N+ peak. N+

inactivity was when the baseline-corrected DF/F was below the reward threshold.

DF/F baseline correction

The distribution ofDF/F tends to be skewed due to positive Ca events, and thus themean of theDF/F distribution is not representative

of the baseline of DF/F. To estimate the baseline of DF/F, which corresponds to the mean of DF/F during the inactive periods, we

computed the mean of a truncated distribution defined recursively as below: First, we calculated the mean and the SD of the whole

distribution during the pre-task period, and used mean ± 2 SD as the boundaries to make a truncated distribution. Next, we calcu-

lated the mean and the SD of the truncated distribution, and used mean ± 2.274 SD as the new boundaries. This step was repeated

30 times. The coefficient for SDwas twice the reciprocal of the SD of Gaussian distribution (s = 1) truncated at ± 2, which was chosen

so that this method converges in one step when applied to a Gaussian distribution. For the baseline-corrected post hoc analysis

described above, the estimated baseline was subtracted from the original DF/F.

Linear models
Task-induced frequency changes

Task-induced reward frequency changes from all the sessions were fit by a multiple linear regression model. The model formula is:

y � 1+ i session+ ð1 j imaging fieldÞ+ ði session­1 j imaging fieldÞ;
where (1jimaging field) and (i_session-1jimaging field) indicate a random effect constant and a random effect slope term for each

imaging field, i_session is a discrete variable representing the session number, imaging field is a categorical variable representing

the identity of imaging fields, and y is reward or neural activity frequency adjusted to pre-task period. fitlme function of MATLAB

was used to fit the model and to test the coefficient of the session number against 0.

To test the decrease of frequency of reward threshold crossing in the contingency degradation sessions, reward frequency

changes from the last 2 neuron-pair operant conditioning sessions and simulated reward frequency changes from the 1-3 contin-

gency degradation sessions were fit by a multiple linear regression model with additional task category term:

y � 1+ task category+ ð1 j imaging fieldÞ;
where task category is a categorical variable indicating whether the session was a neuron-pair operant conditioning task or a con-

tingency degradation session. The model was fit and the coefficient of the task category was tested against 0.

Comparison between cell types

To examine the difference between two cell types, the following model was fit to the results from the two cell types:

y � 1+ i session+ i session � cell type+ ð1 j imaging fieldÞ+ ði session­1 j imaging fieldÞ
When the coefficient of the interaction term is significantly different from 0, it means that the two types are significantly different.

Comparison between target types

To examine the difference due to target types (N+, N- and non-target neurons), the following model was fit to the activity of all the

neurons of the two target types:

y � 1+ i session+ i session � target type+ ð1jimaging fieldÞ+ ði session­1 j imaging fieldÞ:
y indicates peak frequency (Figures 4E and 4F) and simulated reward frequency if each non-target neuron was used as N+ with the

actual target neuron N- (Figure 4G), and if each non-target neuron was used as N- with the actual target neuron N+ (Figure 4H). Note

that activity of individual neurons was used without averaging. When the coefficient of the interaction term is significantly different

from 0, it means that the two types are significantly different.

Mediation analysis

For mediation analysis, the following three linear models were used:

y � 1+N+ +N­+ ð1 j imaging fieldÞ+ ðN+ j imaging fieldÞ+ ðN­ j imaging fieldÞ;
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N+ � 1+ i session+ ð1 j imaging fieldÞ+ ði session­1 j imaging fieldÞ;
N­ � 1+ i session+ ð1 j imaging fieldÞ+ ði session­1 j imaging fieldÞ:
N+ and N- indicates N+ and N- activity frequency.

Correlation coefficient

Correlation coefficient of DF/F during pre-task period on the first session between neurons which met activity criteria was compared

across cell types. To remove the effect of activity frequency, the following linear model was used:

Correlation coefficient � 1+mean activity frequency+ cell type;

Where mean activity frequency is the mean of the activity frequency of the two cells of a pair, and cell type is a categorical variable

representing a cell type of the pair.

Statistics
Linear models with random effect were fit to data using fitlme function in MATLAB R2014, and the significance of the coefficient is

calculated by fitlme using t test. For mediation analysis, t-statistics from fitlme was used with Mediation Analysis p value calculator

with normal approximation [9]. The experiments and the analysis were not blinded. Animal assignment was not randomized. Statis-

tical sample-size estimation was not performed.

DATA AND SOFTWARE AVAILABILITY

Code for online image processing is available at https://github.com/amitani/2pNFB.
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