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The relationship between the brain and the environment is flexible, forming the foundation for our ability to
learn. Herewe review the current state of our understanding of themodifications in the sensorimotor pathway
related to sensorimotor learning. We divide the process into three hierarchical levels with distinct goals:
(1) sensory perceptual learning, (2) sensorimotor associative learning, and (3) motor skill learning. Perceptual
learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase
of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The
later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under
the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor
learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and
behavior.
Many of our behaviors are modified through sensorimotor

learning. Here we broadly define sensorimotor learning as an

improvement in one’s ability to interact with the environment

by interpreting the sensory world and responding to it with the

motor system. Let’s take an example of braking the car while

driving in traffic. To perfect this task, one needs to learn the skill

to accurately estimate the flow of traffic (perceptual learning;

novices tend to focus on the car in front of them, while experts

can selectively use a more diverse set of cues). When one iden-

tifies the slowing of the traffic, the visual information initiates a

motor program to brake the car (associative learning). They

also improve the skill of manipulating the brake smoothly (motor

skill learning; try braking with your left foot in an empty parking

lot—you’ll be surprised.). As illustrated by this example, even a

relatively simple behavior involves amulti-level learning process.

Accordingly, this review discusses neural changes during senso-

rimotor learning in these three hierarchical levels. We note, how-

ever, that these levels are closely intertwinedwith each other and

often occur simultaneously. Therefore, some mechanisms are

likely shared across these levels. An unfortunate consequence

of the broad scope of this review is that many studies or even

systems that deserve attention had to be excluded. Despite

this compromise, we hope that the broad scope helps us to

underscore the distinct requirements of each step, which pro-

vide distinct constraints on the underlying neural mechanisms

(Figure 1).

Sensory Perceptual Learning
Learning of sensorimotor behavior involves selective extraction

and efficient processing of sensory information to generate an

appropriate action. At the sensory processing stage, rich and

multiplex information in the environment is transmitted to the

sensory organs, where attributes of sensory stimuli are trans-

duced to electrical signals, such as action potentials. As the
transduced signal reaches the central nervous system, cognitive

factors actively determinewhat is sampled andwhat is ignored in

the environment. In this vein, the perceptual stage of sensori-

motor learning is a process of establishing optimal representa-

tions of external stimuli that are deemed to be meaningful, a

process known as perceptual learning. This process involves

changes in response properties of individual and populations

of neurons. In this section, we review recent attempts to under-

stand dynamic changes in sensory representations during

perceptual learning, and discuss how these changes are imple-

mented through alterations in operation modes of the underlying

circuit.

Nature of Physiological Changes during Perceptual

Learning

Despite decades of research, there is still a controversy as to

where in the brain neurons change their response properties

with perceptual enhancement during sensorimotor learning

and whether and how such changes are causally linked to

behavioral improvement. Experiments in visual psychophysics

demonstrated that the improved perceptual ability is restricted

to the trained stimulus feature (e.g., orientation) as well as the

location in visual space. These results are often interpreted

as evidence for the involvement of early stages of cortical visual

processing, where neurons are highly selective to physical attri-

butes of visual stimuli, they have relatively small receptive

fields, and the retinotopic organization is preserved. However,

recent experiments using a newly developed double-training

paradigm challenged this notion by demonstrating that the

feature discrimination (e.g., contrast) ability can be transferred

to a new retinal location if subjects were primed at the

second location with a task-irrelevant feature (e.g., orientation)

(Xiao et al., 2008). This observation indicates that perceptual

learning may also involve changes in non-retinotopic higher

brain areas.
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Figure 1. Three Hierarchical Levels of Sensorimotor Learning and Their Unique Tasks
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Neurophysiological mechanisms underlying these observa-

tions in psychophysics have been under intense scrutiny. Theo-

retical studies have proposed that changes in the tuning curve

of individual neurons, such as sharpening, gain modulations, or

shift in the peak in early stages of sensory processing, could in-

crease the neuron’s ability to discriminate similar stimuli (Teich

and Qian, 2003) (Figure 2A). These theories are supported by

several experimental studies, where neurons in V1 and V4 in-

crease their selectivity to task-relevant stimuli (Poort et al.,

2015; Schoups et al., 2001; Yan et al., 2014; Yang and Maunsell,

2004). Similar effects, such as increase in the tuning sharpness or

expansion in the cortical area of representation, were also

observed in primary sensory areas during frequency discrimina-

tion learning involving somatosensation or audition in owl mon-

keys (Recanzone et al., 1992, 1993). Other theories, however,

have postulated that the enhanced behavioral performance is

due to improved perceptual judgment in later stages of sensory

processing. These theories propose that perceptual learning in-

volves appropriate routing and weighting of the most informative

inputs from the sensory processing stage to the decision stage,

while neural properties in early sensory areas are unaltered (Law

and Gold, 2009; Petrov et al., 2005). Consistently, during motion

discrimination training in monkeys, little change was observed

in motion-evoked responses in the middle temporal area, a mo-

tion-sensitive sensory area, but responses to task-specific mo-

tion stimuli emerged and gradually increased in the lateral

intraparietal area, a region known to be involved in decisionmak-

ing (LawandGold, 2008). Furthermore, amore recent experiment

showedminimal changes in stimulus discriminability of neural en-

sembles in mouse vibrissal primary somatosensory cortex (vS1)

during learning of a whisker-mediated object-localization task,

also supporting such late-stage models (Peron et al., 2015).

Single-neuron responses must be considered in the context of

the underlying population activity structures. Recent simulation
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suggested that, at least within certain constraints, sharpening

or amplification in the tuning of single neurons at early stages

of sensory processing is neither necessary nor sufficient to

improve population codes. For instance, sharpening of the

tuning curve can be mediated by changes in intracortical con-

nectivity, which can alter correlation statistics and lead to a large

loss of information (Bejjanki et al., 2011; Seriès et al., 2004). To

reconcile these issues, theoretical studies have proposed how

different correlation structures could affect sensory coding.

Enhanced discriminability during perceptual learning may, for

example, depend on the relationship between two forms of cor-

relation structures in the ensemble activity: similarity in tuning

properties between a pair of neurons, known as signal correla-

tion, and trial-by-trial response fluctuations to identical stimuli,

known as noise correlation (Averbeck et al., 2006; Oram et al.,

1998; Zohary et al., 1994). For similarly tuned neurons (i.e., pos-

itive signal correlation), reduction in noise correlations would in-

crease the information about stimulus identity since the degree

of overlap in firing rate distributions between two neurons de-

creases. Likewise, an increase in noise correlations in neurons

with dissimilar tuning (i.e., negative signal correlation) would

improve coding accuracy since common noise can be sub-

tracted (Figure 2A) (Romo et al., 2003). Indeed, a recent study

in songbirds found that after auditory discrimination learning,

larger signal correlations in cortical neurons coincided with

smaller noise correlations for task-relevant auditory stimuli, but

not for task-irrelevant or novel stimuli (Jeanne et al., 2013). In

contrast, two monkey studies demonstrated a reduction in noise

correlations in neurons in themedial superior temporal area or V1

during perceptual learning (Gu et al., 2011; Yan et al., 2014). The

reduction, however, was observed across a range of signal cor-

relations and did not seem to be related to the improvement in

coding fidelity. These discrepancies clearly point out that a

unified account of the correlational nature of population-level



Figure 2. Emerging Principles and Changes in the Circuit Operation during Perceptual Learning
(A) Changes in neural activity during perceptual learning. Left, changes in single-neuron activity. Perceptual learning could involve changes in the tuning of
individual neurons by increasing their sharpness or gain, or shifting their peak. Right, changes in population activity. Perceptual learning could enhance dis-
criminability of stimuli by decreasing the trial-by-trial response fluctuations (s), increasing the distance between mean responses (d), or changing noise cor-
relations. Individual dots indicate single trials. Note that the changes in fluctuations and distance can be achieved by independent changes of single neurons,
while noise correlation changes would require coordination across neurons.
(B) Perceptual learning could involve changes in the circuit operation. Learning-dependent suppression of distal dendritic inhibition (top) or perisomatic inhibition
(bottom) could enhance the impact of top-down processing or the gain of principal neurons, respectively.
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changes underlying perceptual learning is yet to be achieved.

Importantly, discrimination learning does not always improve

the discriminability by neural ensembles. By monitoring odor

representations by mitral cells in the mouse olfactory bulb, it

was found that mitral cells became better at discriminating the

odorants when mice were trained to discriminate between very

similar odorants. However, when mice discriminated between

very dissimilar odorants, counterintuitively, the representations

of the two odorants gradually becamemore similar. This bidirec-

tional effect was interpreted such that learning achieves an

optimal separation of representations of familiar stimuli,

balancing the robustness of discrimination and capacity of cod-

ing (Chu et al., 2016).

Metabolic efficiency might be another major design principle

that sensory systems aim to achieve during sensorimotor

learning. Sparse coding, where information is represented by a

relatively small number of spikes and/or neurons, is observed

in different sensory modalities across a wide range of species

(Brecht and Sakmann, 2002; DeWeese et al., 2003; O’Connor

et al., 2010; Olshausen and Field, 2004; Perez-Orive et al.,

2002). The reduction in population responses may be a common

feature of learning-driven changes in population coding (see also

the motor skill learning section below), which could reduce over-

laps between representations in space and time and facilitate

decoding by downstream areas (Laurent, 2002). Indeed, chronic

tracking of the same neural population over sensorimotor

learning demonstrated a decrease in the number of responsive

neurons and/or magnitudes of responses to the same sensory

stimuli (Chu et al., 2016; Gdalyahu et al., 2012; Makino and Ko-

miyama, 2015).

Generation of Neural Assemblies Dedicated to Learned

Behavior

Representations of behaviorally relevant sensory stimuli are

gradually stabilized through learning. Recent advances in two-

photon calcium imaging permit long-term monitoring of the
same neural population, providing insights into how sensory rep-

resentations evolve over time. For instance, responses of neu-

rons in the mouse V1 become more reliable and selective over

the course of visual discrimination training (Poort et al., 2015).

Similarly, representations of mouse vS1 neurons become more

stabilized following a whisker-mediated object-localization task

(Peron et al., 2015). Such a learning-dependent stabilization of

activity patterns is one of the emergent properties observed in

many brain areas, including motor cortex (Huber et al., 2012; Pe-

ters et al., 2014). These processes are likely facilitated by synap-

tic plasticity, whereby interconnected subnetworks are formed

to generate learned activity patterns. For instance, neurons

sharing similar receptive field properties are more likely to be

connected (Cossell et al., 2015; Ko et al., 2011; Lee et al.,

2016; Wertz et al., 2015) and these features emerge upon eye

opening (Ko et al., 2013). Sensory experience further refines

the circuit by pruning connections between visually non-respon-

sive neurons (Ko et al., 2014), suggesting that repeated exposure

to natural statistical features, together with intrinsic spontaneous

activity, establishes a dedicated neural circuit for sensory pro-

cessing. Stable representations with low trial-to-trial variability

might help fine discrimination through a more robust readout

of task-relevant information by downstream neurons. For

instance, perceptual grouping of different mixture ratios of tones

or odors may be achieved via attractor-like, discrete representa-

tions of neural assemblies. In this scheme, representations

within the same category share similar and highly reproducible

neural trajectories in a high dimensional state space, while rep-

resentations across categories diverge their response dynamics

(Bathellier et al., 2012; Niessing and Friedrich, 2010). Impor-

tantly, these distinct categorical representations can predict

the performance of perceptual grouping (Bathellier et al., 2012).

Inhibitory Circuits in Perceptual Learning

The changes in sensory representations during perceptual

learning likely involve a variety of mechanisms, among which
Neuron 92, November 23, 2016 707
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inhibitory circuits have garnered considerable attention in recent

years. This was partially due to the development of genetic tools

to identify and manipulate specific subtypes of inhibitory neu-

rons. Inhibition ismediated by the neurotransmitter GABA, which

shapes the activity of principal glutamatergic neurons in space

and time. Inhibition contributes to gain modulations by altering

the slope of the input-output function. It can also sharpen tuning

curves of principal neurons by suppressing responses to non-

preferred stimuli through an increase in spike threshold (‘‘iceberg

effect’’). These two parameters, changes in gain and sharpening

of the tuning curve, are two of the aforementioned potential

mechanisms to increase the individual neuron’s ability to

discriminate similar stimuli (Figure 2A). Consistent with these

notions, activation of parvalbumin (PV or Pvalb)-expressing

inhibitory neurons in the mouse visual cortex sharpens orienta-

tion tuning and improves behavioral discrimination of similarly

oriented visual stimuli (Lee et al., 2012). Furthermore, in the

mouse olfactory bulb, local GABAergic neurons contribute to

pattern separation of similar odors in mitral/tufted cells and

enhance discrimination performance of the animal (Gschwend

et al., 2015). Together with the theoretical support, it is possible

that these inhibitory neurons play an active role in enhancing the

principal neurons’ discriminability of stimuli during perceptual

learning. Longitudinal recording from genetically defined inhibi-

tory neural populations over learning will be a useful approach

to test this idea.

GABAergic inhibitory neurons are highly heterogeneous in

morphology, physiological properties, and gene expression. By

regulating distinct subcellular compartments of principal neu-

rons, different subtypes of inhibitory interneurons may function

to regulate the flow of information (Chen et al., 2013; Kepecs

and Fishell, 2014; Lovett-Barron et al., 2014). For example, PV-

expressing basket or chandelier cells modulate gain through

inhibitory action on perisomatic regions or axon-initial segments

(Atallah et al., 2012; Wilson et al., 2012). Somatostatin (SOM or

Sst)-expressing Martinotti cells inhibit distal dendrites of prin-

cipal neurons andmay regulate inputs carried by long-range pro-

jections (Gentet et al., 2012). It is likely that different types of

learning involve distinct changes in inhibitory network activity

and computations in order to gate or route various incoming sig-

nals. For instance, auditory associative fear learning in mice was

associated with cholinergic activation of layer 1 inhibitory inter-

neurons, which then suppress layer 2/3 PV inhibitory neurons.

The resulting disinhibition of the feedforward drive could

enhance cortical representations of sensory information by

increasing the gain of principal neurons (Figure 2B) (Letzkus

et al., 2011). In contrast, the increased influence of non-sensory

information in mouse V1, likely carried by long-range feedback

inputs, coincided with the reduced activity of SOM inhibitory

interneurons (Figure 2B). Artificial reactivation of SOM interneu-

rons partially reversed the learning-related change in principal

neuron activity (Makino and Komiyama, 2015). These results

are consistent with the notion that SOM inhibitory interneurons

act as a gate for long-range inputs and that this gate can be flex-

ibly adjusted by learning. Unraveling how distinct types of inhib-

itory neurons interact with each other to modulate the firing

pattern of individual principal neurons and their population corre-

lation structures during learning is an important future direction.
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Bottom-Up and Top-DownProcessing during Perceptual

Learning

So far, we have discussed changes in sensory representations

during perceptual learning within a local circuit. However, neu-

rons receive convergent inputs from other brain areas, and in-

ter-areal interactions likely play important roles in perceptual

learning. For instance, it is now evident that sensory processing

involves intricate interactions of concurrent streams of informa-

tion flow, one from the environment in a bottom-up manner

and the other from higher-order brain areas in a top-down

manner (Figure 2B). Even neurons in early stages of sensory pro-

cessing may therefore be subject to influences of contexts and

cognitive factors, which could profoundly modify their receptive

field properties.

Traditionally, it has been considered that perceptual learning is

mainly driven by bottom-up processes. For example, psycholo-

gists showed that passive tactile stimulation of human fingers

improved two-point discrimination (Godde et al., 2000). Like-

wise, mere exposure to task-irrelevant stimuli that are below

subjects’ detection threshold (i.e., without their awareness)

improved task performance when subjects were tested subse-

quently (Watanabe et al., 2001). These studies have often been

used as evidence that bottom-up information processing is suf-

ficient to induce sustainable changes in the brain to improve

behavioral performance, under the assumption that top-down

processing is disengaged during passive or subthreshold expe-

rience. Recent studies, however, provide an alternate view advo-

cating that top-down processing, such as attention, expectation,

and motor commands, is an essential component of perceptual

learning. In this view, it is argued that perceptual learning could

dynamically switch the operation modes of downstream circuits

according to ongoing behavioral requirements (Gilbert and Li,

2013). For instance, neurons in monkey V1 exhibit stronger

top-down-mediated contextual modulations after training with

a three-line bisection task, where the subjects were asked to

report which of the two reference lines was closer to the central

line (Crist et al., 2001). In mouse V1, enhanced orientation dis-

criminability by neural populations was diminished when mice

were disengaged from the task, further supporting the impor-

tance of top-down control in learning (Poort et al., 2015). In

addition, attention can rapidly control gain of single neurons

(Reynolds et al., 2000) or change interneuronal correlations (Co-

hen and Maunsell, 2009) on a moment-by-moment basis. For

example, it was recently shown that attention can increase or

decrease noise correlations inmonkey V4 depending onwhether

neurons provide evidence for the same or opposite stimulus

choices in a contrast discrimination task (Ruff and Cohen,

2014), in a manner similar to how learning alters the relationship

between signal and noise correlations (Jeanne et al., 2013).

These acute top-down modulations are somewhat distinct

from the traditional notion of perceptual learning, but they

can underlie the improved perceptual discriminability during

learning. Furthermore, in the primate, neurons in V1 produce

sparse responses when images spanning non-classical recep-

tive fields are included (Vinje and Gallant, 2000). This well-known

phenomenon of surround suppression may be explained by the

predictive coding scheme, whose goal is to reduce redundancy

by removing predictive components of the input by top-down
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modulation. In this scenario, higher brain areaswith larger recep-

tive fields can predict stimulus attributes on smaller receptive

fields in lower brain areas because of statistical regularities in

space inherent in natural scenes (Rao and Ballard, 1999).

Learning of such regularities in the sensory environment may

‘‘explain away’’ bottom-up sensory representations by sup-

pressing the activity in lower brain areas with the inhibitory

machinery, which could lead to sparse coding and enhance

metabolic efficiency. Understanding the circuit mechanisms by

which top-down control selectively modifies single-neuron prop-

erties or population structures during perceptual learning is an

area of active investigation.

Recent efforts to directly visualize and manipulate top-down

processing provided compelling evidence that adaptive sensory

representations require top-down processing. By expressing the

genetically encoded calcium indicator, GCaMP, in mouse vibris-

sal motor cortex and imaging the activity of their axons in vS1,

feedback projections were shown to be functionally heteroge-

neous, including responses to touch or whisker movement

(Petreanu et al., 2012). With similar approaches, responses of

top-down inputs from mouse piriform cortex to olfactory bulb

were shown to have various tuning properties, and these inputs

contributed to decorrelation of mitral cell responses to odors

(Boyd et al., 2015; Otazu et al., 2015). Chronic monitoring of

top-down inputs during associative learning in mice showed

enhancement of top-down influences from retrosplenial cortex

to V1, possibly carrying information about the timing of the asso-

ciated event (Figure 2B) (Makino and Komiyama, 2015). Interest-

ingly, such signal may also be dependent on the cholinergic input

(Chubykin et al., 2013), implying an additional mechanism

involving changes in neuromodulation. In line with these studies,

learning of an object localization task in mice led to initial

enhancement in dendritic spine growth in the barrel cortex at

layer 1, where top-down inputs make synaptic connections

(Kuhlman et al., 2014). The causal link of top-down processing

for perceptual tasks has also been demonstrated bymicrostimu-

lation or pharmacological inactivation of top-down sources

(Moore and Armstrong, 2003; Xu et al., 2012) or optogenetic ma-

nipulations of top-down axons (Manita et al., 2015; Zhang et al.,

2014). These results confirm the importance of top-down pro-

cessing in sensorimotor learning.

Remaining Questions in Perceptual Learning

It is important to synthesize these diverse physiological phenom-

ena into a coherent conceptual framework. Receptive field prop-

erties of individual neurons are tightly related to the activity of

other circuit components. For example, a better understanding

of the roles of different subtypes of inhibitory neurons in

learning-dependent changes would clarify how information is

differentially routed through learning (Figure 2B). In addition,

roles of inter-areal interactions involving bottom-up and top-

down processing, including neuromodulatory systems, in regu-

lating learning-related changes in inhibitory network activity or

local correlation structures (Chen et al., 2015a; Fu et al., 2014;

Nelson and Mooney, 2016; Zhang et al., 2014) need further

investigation. Moreover, how the layered structure of the cortex

integrates and segregates incoming information during learning

is an important issue. Such an approach to reverse engineer

the brain circuit underlying learning requires identification and
perturbation of the activity of individual circuit elements dedi-

cated to the task. It is also important to note that the changes

in sensory representations during sensorimotor learning, in-

cluding correlations of neural activity, should be ultimately dis-

cussed in light of the downstream readout mechanisms that

are often unknown. Finally, although microcircuit dynamics dur-

ing learning have been extensively studied in the recent years, it

is equally important to understand how the meso- and macro-

scopic dynamics influence sensory representations during

sensorimotor learning (Wekselblatt et al., 2016).

Sensorimotor Associative Learning
In addition to the enhanced stimulus detection anddiscrimination

discussed in the previous section, sensorimotor learning requires

linking particular aspects of environmental stimuli with specific

actions. This section discusses neural mechanisms related to

the associative component of learning by focusing on cases in

which conspicuously distinct stimuli are paired with motor re-

sponses that the subjects already know how to perform profi-

ciently. Although conditioned reflexes such as fear conditioning

belong to such a category, we will discuss mostly associative

learning producing non-reflexive movements, for neural circuitry

andmechanisms underlying conditioned reflexes are extensively

dealt with in other recent reviews (Gr€undemann and L€uthi, 2015;

Herry and Johansen, 2014; Mahan and Ressler, 2012; Maren

et al., 2013). We first review neural circuits and activity changes

involved in sensorimotor associative learning, and then neural

mechanisms underlying those changes.

Neural Representation Changes during Sensorimotor

Associative Learning: Formation of Dedicated Pathways

between Sensory Input and Motor Output

The locus of arbitrary associative learning in mammalian nervous

systems has been first inferred from human patients with brain

lesions. For instance, damage to the human lateral frontal cortex

resulted in a severe impairment in learning arbitrary sensorimotor

associations without deficits in sensory discrimination or move-

ments (Milner, 1982). To more precisely delineate the neural

circuits involved in associative learning, subsequent studies em-

ployed controlled lesions in specific brain areas and/or axon

bundles of non-human primates and measured the effect on

learning arbitrary sensorimotor association. In a typical experi-

ment, a set of sensory stimuli (e.g., different shapes of visual

stimuli, different colors, etc.) was paired arbitrarily with a set of

motor responses (e.g., gripping a stick versus touching a button,

saccade to the left versus right). Learning such stimulus-

response relationships by trial and error was impaired by lesions

in diverse areas, including the dorsal premotor cortex (PMd),

prefrontal cortex (PFC), connections between inferior temporal

cortex and PFC, and connections from the basal ganglia to the

frontal cortex via thalamus, hippocampal formation, and fornix

(Canavan et al., 1989; Gaffan and Harrison, 1988, 1989; Murray

and Wise, 1996; Petrides, 1982; Rupniak and Gaffan, 1987). In

contrast, a lesion in the posterior parietal cortex, a region that

has been widely implicated in perceptual decision-making pro-

cess, did not compromise arbitrary associative learning, but

instead impaired spatial control of movements, consistent with

more recent acute perturbation results (Hwang et al., 2012;

Rushworth et al., 1997).
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These findings motivated studies to examine neural activity

changes in those identified brain areas during associative

learning using the kind of tasks described above. The commonly

observed learning-related change across areas including PMd,

dorsolateral PFC, orbitofrontal cortex (OFC), amygdala, and

the striatum is that neurons become selectively active for a

particular stimulus, response, or response outcome over the

course of learning (Asaad et al., 1998; Mitz et al., 1991; Pasupa-

thy and Miller, 2005; Schoenbaum et al., 1998). Notably, in

dorsolateral PFC, many neurons become active only for a partic-

ular sensory and motor combination (Asaad et al., 1998). For

example, when monkeys had already associated a stimulus

and leftward saccades, and then learned to associate a new

stimulus with the same leftward saccades, some neurons

became active in trials in which leftward saccades were made

in response to the new stimulus, but not in response to the first

stimulus. Such neurons recruited for a specific stimulus-

response combination seem to be involved in creating a dedi-

cated pathway between the newly paired sensory input and

motor output. In contrast, neurons in OFC and amygdala appear

to encode the valence of the stimulus irrespective of the nature of

the stimulus-motor response combinations, for neurons in these

regions show the same activity for different stimuli or for different

responses as long as the stimuli predict the same outcome (e.g.,

reward) (Schoenbaum et al., 1998; Wallis and Miller, 2003).

Therefore, OFC and amygdala might contribute to associative

learning by providing predicted outcome information for the

computation of reward prediction error (i.e., discrepancy be-

tween the actual and predicted reward), while PFCmight actually

build an express pathway between the learned sensory input and

motor output (Schoenbaum et al., 2009; Wallis and Miller, 2003).

Although neural changes related to associative sensorimotor

learning might be similar across different brain areas (e.g., the

emergence of selective activity for a specific stimulus-response

combination, or selective activity for the predicted outcome), the

temporal dynamics of neural changes could differ, hinting at a hi-

erarchical order in learning-related changes, transfer of informa-

tion between areas, and potentially different roles of those areas.

For instance, in both dorsolateral PFC and striatum, as the ani-

mal’s association performance improved, neurons became

more active for a specific stimulus-response pair between stim-

ulus onset and response onset. Intriguingly, this association-

selective activity developed earlier in the striatum than the

dorsolateral PFC during the training, suggesting that rewarded

associations are first identified by the basal ganglia, and the

basal ganglia output may train slower learning mechanisms in

PFC (Pasupathy and Miller, 2005). Different temporal dynamics

were also found in the responses related to predicted outcomes

in OFC and amygdala (Morrison et al., 2011). Neurons that pre-

dict aversive outcomes evolved during learning earlier in amyg-

dala than OFC, whereas neurons that predict reward appeared

earlier in OFC, suggesting complex inter-areal interactions un-

derlying associative behaviors. In line with this view, lesions in

one area reduced the expected outcome coding in the other (Ru-

debeck et al., 2013; Saddoris et al., 2005).

While the studies mentioned above focus primarily on brain

areas outside the primary sensory and motor areas, activity

changes related to sensorimotor associative learning have also
710 Neuron 92, November 23, 2016
been reported in the primary regions. Some of the neural

changes in the primary areas may be attributable to concurrent

perceptual enhancement or motor skill learning discussed in

the other sections, but other changes seem to be related to the

associative component of learning. As mentioned above, visual

cortical neurons become more sensitive to top-down signal,

anticipating the arrival of the associated event during associative

learning (Makino and Komiyama, 2015). Additionally, in the pri-

mary motor cortex of macaques, neurons became sensitive to

the visual features of stimulus, such as colors, after learning to

associate different colors with different reaching movements

(Zach et al., 2008).

Neural Mechanisms Underlying Associative Learning

The previous section examined neural changes related to asso-

ciative learning across various areas mostly in primate brains,

after their involvement was inferred from gross lesion studies.

This section reviews more recent discoveries revealing neural

mechanisms leading to such neural changes by breaking down

the learning process into three conceptual elements, i.e., explo-

ration, reinforcement, and path optimization. Many of these

new studies were conducted in non-primate animals in which

advanced molecular tools for dissecting neural circuits such as

optogenetics and cell-type-specific labeling are available. None-

theless, the majority of brain areas in discussion share functional

homology between species, and our hope is that the principles

we describe are general across species.

Exploration. When first facing a new sensorimotor task, we do

not necessarily know the defined set of action goals relevant to

the task, but instead discover them by exploring our motor/

action repertoire. During this behavioral exploration, not only

are different action goals tested, but also various motor patterns

to achieve the same goals are probed. In this section, we focus

on the exploration of action goals. Explorations ofmotor patterns

will be further discussed in the motor skill learning section.

A number of brain areas appear to be involved in controlling

exploration during sensorimotor association tasks. In ma-

caques, neurons in the globus pallidus internus, the output struc-

ture of the basal ganglia, showed lower pre-movement activity

during exploratory behavior and higher activity during an

exploitive phase of associative learning (Sheth et al., 2011).

The supplementary eye field has also been implicated in promot-

ing animals to explore alternative responses (Donahue et al.,

2013). Enhanced exploration was accompanied by axonal bou-

ton loss in mouse OFC neurons that project to the dorsomedial

PFC, raising the possibility that the interconnectivity between

the two areas might adjust the extent of exploration (Johnson

et al., 2016). In humans, blood oxygen level-dependent (BOLD)

signals in the rostral PFC and the intraparietal sulcus increase

in explorative trials during reinforcement learning (Daw et al.,

2006).

Neuromodulators also seem to play a role in controlling

exploration. Activating locus coeruleus noradrenergic input to

anterior cingulate cortex (ACC), likely suppressing ACC activity,

enhanced explorative behaviors of rats (Tervo et al., 2014). The

increased BOLD signal in the rostral PFC during exploration

might be controlled, in part, by dopamine, for individuals with a

gene allele that inefficiently breaks down dopamine in PFC

tend to explore more than those with different alleles during



Neuron

Review
learning (Frank et al., 2009). Further supporting the role of dopa-

mine for exploration, blocking dopamine receptors in the ma-

caque PFC reduced the monkey’s tendency to switch motor

responses during associative learning (Puig and Miller, 2012,

2015). This dopamine-dependent exploration might be related

to dopamine-dependent synaptic plasticity in PFC (Seamans

and Yang, 2004). More specifically, in mouse PFC slices, long-

term potentiation (LTP) is absent in layer 5 pyramidal neurons

due to GABAergic inhibition, but dopamine enables LTP by

acting on D2 receptors on inhibitory interneurons and reducing

GABAergic transmission to pyramidal neurons (Xu and Yao,

2010). Also, dopamine extends the temporal window of coinci-

dence detection for LTP between pre- and postsynaptic activa-

tion by acting on D1 receptors on pyramidal neurons (Xu and

Yao, 2010). Thus, one possibility is that dopamine opens thewin-

dow of plasticity in PFC, during which behavioral exploration is

permitted.

Reinforcement. During exploration, the brain must fortify or

weaken certain pathways to ultimately exploit the most effective

pathway to achieve the desirable behaviors. A widely hypothe-

sized neural mechanism underlying this process is synaptic

weight update in association areas based on reward prediction

error (Pessiglione et al., 2006; Sutton and Barto, 1998). This

learning mechanism has gained popularity since the finding

that the activity of dopamine neurons closely reflects reward

prediction error; it is enhanced by unexpected reward or any in-

dicator of potential reward (such as conditioned stimuli) and sup-

pressed when an expected reward is not present (Eshel et al.,

2015; Schultz et al., 1993; Waelti et al., 2001). In this hypothesis,

the brain continuously computes the discrepancy between the

expected reward and the actual outcome following each

executed behavior, and reinforces the weights of active synap-

ses after positive prediction error, while weakening them after

negative error (Pessiglione et al., 2006; Sutton and Barto,

1998). Themodified synaptic weights reflect the newly evaluated

likelihood that the behavior will generate beneficial outcomes, al-

lowing the brain to adaptively route sensory information and elicit

optimal motor actions.

Themost plausible locus of such plasticity is the striatum in the

basal ganglia, which is heavily innervated by dopaminergic neu-

rons, receives convergent sensory information through cortico-

striatal projections, and sends its output to influence cortical

and subcortical motor control regions. Supporting the associa-

tive role of the striatum, after rats learned to associate two

different types of auditory stimuli with two different actions, op-

togenetic stimulation of the cortico-striatal projection neurons

that represent one type of stimuli caused the rats to more

frequently generate the action paired with that stimulus type

(Znamenskiy and Zador, 2013). Importantly, this associative

learning was accompanied by a selective potentiation of cor-

tico-striatal synapses in a manner that conforms to the

specifically learned associative rules, demonstrating that cor-

tico-striatal synapses are indeed a site of plasticity during asso-

ciative learning (Xiong et al., 2015). The synaptic reshaping in the

striatum is likely guided by dopaminergic neurons encoding

reward prediction error, as indicated by multiple lines of evi-

dence. First, LTP and long-term depression (LTD) of cortico-

striatal synapses depend on the phasic burst of dopamine
(Shen et al., 2008; Yagishita et al., 2014). Second, perturbing

the balance of dopamine or dopamine receptors impairs asso-

ciative learning, probably due to aberrant plasticity (Bach et al.,

2008; Eyny and Horvitz, 2003; Smith-Roe and Kelley, 2000).

Furthermore, delivering microstimulation in the striatum or opto-

genetically activating dopamine neurons during the reinforce-

ment period of correct trials, supposedly mimicking positive

prediction error, significantly increased the rate of associative

learning or prevented blocking/extinction of association (Stein-

berg et al., 2013; Williams and Eskandar, 2006).

As examined so far, there is compelling evidence that dopa-

mine-dependent plasticity in cortico-striatal synapses plays a

critical role in sensorimotor associative learning. However, rela-

tively little is known about how this plasticity in the inputs to the

basal ganglia relates to the selection and execution of particular

motor programs (Hélie et al., 2015; Hikosaka et al., 2006). One

possibility is that the basal ganglia output through the thalamus

generates appropriate motor actions by activating specific PFC

neurons, which would then activate specific motor cortical cir-

cuits. Subsequently, the coincident activity between inputs

from the basal ganglia and from sensory areas may strengthen

the specific synapses onto PFC neurons from sensory areas

via Hebbian plasticity (Hélie et al., 2015). Such plasticity could

generate a shortcut pathway from sensory to prefrontal to motor

cortices, bypassing the basal ganglia circuit (Figure 3A). Thus,

well-practiced associations may be driven more efficiently

through this shortcut pathway at later learning stages. However,

this simple model has several unresolved issues. First, this

model assumes that the striatum contains neural activity pat-

terns that can specifically drive a variety of precise motor pat-

terns, a notion that has yet to be demonstrated. Second, as

reviewed above, striatal neurons start discriminating different

stimuli earlier than PFC neurons during associative learning,

and the time course of behavioral improvement matches that

of PFC neural changes (Pasupathy and Miller, 2005). The

different time courses between PFC and the striatum are difficult

to explain with the model in which the basal ganglia drive motor

responses through PFC. An alternative hypothesis is that

dopamine-dependent plasticity would render striatal neurons

receiving input from both sensory and motor areas to become

selectively active for specific stimulus-response pairs (Fig-

ure 3B). Such associative striatal activity, while it may not drive

motor patterns, can serve as a teaching signal to strengthen

the specific sensory input synapses to PFC neurons driving

that specific motor pattern (Figure 3B). Two important, unproven

assumptions for this model are that (1) individual striatal neurons

receive convergent inputs of specific sensory and motor infor-

mation and (2) that the striatal neurons that receive projections

from a specific motor circuit return its output preferentially to

PFC neurons driving that specific motor circuit. We also note

that given the highly divergent projections of basal ganglia out-

puts to many cortical and subcortical regions, these models

are almost certainly oversimplified. Dissecting the projection

circuit from the basal ganglia to downstream areas using opto-

genetic tools could be an important step toward a better under-

standing of the output function of the basal ganglia.

Path Optimization. One effect of associative learning is the

decreased reaction time of the associated motor response,
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Figure 3. Circuit Models of Sensorimotor
Associative Learning
(A) In this model, sensorimotor association is
initially executed by dopamine-dependent plas-
ticity to strengthen the corticostriatal synapses in
the basal ganglia carrying specific sensory in-
puts (1). The downstream pathway drives specific
motor responses via PFC (blue). The basal ganglia
output to PFC also strengthens sensory input
synapses in PFC (2), which subsequently forms a
pathway from sensory to prefrontal to motor
cortices, bypassing the basal ganglia (green).
Further training creates direct cortico-cortical
pathways between sensory and motor cortices,
via coincidental activation-dependent plasticity
(red; 3).
(B) Alternative hypothesis: the basal ganglia output
to PFC provides a teaching signal, without driving
specific motor responses. During the exploration
phase of learning, striatal neurons that receive
convergent inputs carrying specific sensory and
motor information undergo plasticity based on the
dopamine prediction error signal (left). This asso-
ciation-specific activity in the basal ganglia pro-
vides a teaching signal for PFC neurons that drive
the specific motor program to strengthen the syn-
apses carrying the specific sensory information
(right). Gray boxes denote the sites of plasticity. In
this model, learning is behaviorally evident only
after the plasticity in PFC.
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indicating an increased efficiency in information processing. The

increased efficiency might be achieved by shortening signal

transduction pathways between sensory and motor ends. The

shortcut circuit that bypasses basal ganglia, discussed above,

would serve this purpose (Figure 3A). Furthermore, strength-

ening direct synaptic connections between the sensory and

motor cortices would further expedite signal transduction (Fig-

ure 3A). As reinforcement learning progresses, coincidental

activations of sensory and motor neural populations, each rep-

resenting the learned stimulus and response, respectively,

occur more frequently. Such coincidental activation would

permit Hebbian plasticity at the cortico-cortical synapses that

correspond to the associations. A potential cellular basis for

such plasticity has been studied in the barrel cortex, where

coincidental arrivals of long-range input from the motor cortex

in the apical dendritic tuft and the ascending sensory input onto

layer 5 pyramidal neurons evoked long-lasting plateau poten-

tials in the tuft (Xu et al., 2012). Such plateau potentials have

been shown to induce LTP in the apical tuft in hippocampal sli-

ces (Takahashi and Magee, 2009). Thus, in the barrel cortex,

coincidental arrivals of motor and sensory signals might drive

LTP in the apical dendritic synapses via plateau potentials,

strengthening the direct connection between the two regions.

Likewise, in the motor cortex, where the apical tuft receives

long-range input from the sensory cortex, coincidental sensory

and motor signals may drive LTP in the apical dendrites,

strengthening the connectivity between task-relevant sensory

and motor signals during associative learning. Supporting this

idea, a loss of NMDA receptor function that impaired primary

motor cortex LTP slowed down associative learning in mice

(Hasan et al., 2013). Therefore, this non-linear cellular mecha-

nism of integrating concurrent sensory and motor inputs

(i.e., the formation of plateau potentials) could generate direct,
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fast signal transduction pathways between repeatedly associ-

ated stimuli and motor responses.

Overtraining can further increase efficiency, producing reflex-

ive, habitual responses that are insensitive to action outcome

contingency (Smith and Graybiel, 2013). As behavior shifts

from goal-directed action to habit, dominant control over behav-

iors also moves from dorsomedial (DMS) to dorsolateral striatum

(DLS) (Yin and Knowlton, 2006). Recent experiments suggest

that the shift from DMS to DLS requires activity attenuation of

cortico-striatal neurons in OFC and postsynaptic depression in

D2 neurons in DLS (Gremel et al., 2016; Shan et al., 2015). Tran-

sition from DMS to DLS over time is also observed during motor

skill learning, suggesting that DLS ultimately permits automatic,

stereotypical behaviors.

Motor Skill Learning
Even after attaining the perceptual improvement and flexible

stimulus-response associations described in the previous sec-

tions, successful sensorimotor learning still ultimately depends

on the generation of a skilled motor behavior that consistently

yields favorable outcomes. This process is known as motor skill

learning and is canonically defined as the repetition-mediated in-

crease in the speed and accuracy of a newly acquired motor

behavior (Diedrichsen and Kornysheva, 2015; Shmuelof and

Krakauer, 2014). Such learning follows awell-characterized tem-

poral pattern, beginning with a rapid initial improvement (a ‘‘fast

learning’’ phase), followed by more moderate refinements over a

longer time course (a ‘‘slow learning’’ phase) (Karni et al., 1998).

The early stages involve exploration of a range of behaviors and

concomitant outcome-based selection, after which repetition-

based refinements of the task dominate, driving the formation

of a highly stereotyped movement with little trial-to-trial vari-

ability. The task of themotor-associated brain regions, therefore,
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is to create a dedicated pathway for the effortless and stereo-

typed execution of a learned skill by first exploring possible dis-

tributions of behaviors that yield positive outcomes, then

defining and refining a final distribution.

The goal of the following section is to highlight the current un-

derstanding of the governing set of principles that likely guide

learning-mediated changes in the brain during the acquisition

of a motor skill. Specifically, we propose that the combination

of behavioral exploration, outcome-mediated feedback, and

Hebbian mechanisms of plasticity is sufficient to generate a sta-

ble circuit that can accurately and reliably produce a novel motor

behavior.

Exploration of Neural Representations

During the initial stage of behavioral exploration, the brain must

likewise sample a variety of circuits that could potentially elicit

effective movements. As such, the early stages of motor learning

should be characterized by a large number of movement-related

circuits, which can then be refined as the motor behavior is

honed. Consistent with this idea, a large body of literature sug-

gests that the neural representations of a newly acquired motor

skill can expand during the initial phase of learning.

Expansion of Motor Representations in the Cortex. The motor

cortex contains a ‘‘somatotopic map,’’ inasmuch as stimulation

of different cortical areas evokes movements of different body

parts. Far from being a static representation of motor primitives,

the somatotopic map of the motor cortex is a highly plastic

feature. A dramatic example of this comes from peripheral nerve

lesions in rats, which shrink the cortical areas corresponding to

injured inputs, allowing uninjured regions to encroach onto this

newly available cortical territory (Donoghue and Sanes, 1987).

Similarly, studies in a host of model organisms ranging from ro-

dents to humans have repeatedly shown that motor learning

causes an expansion of the somatotopic motor map for the

associated muscle groups, suggesting that these muscles now

have an elaborated representation in the cortex (Karni et al.,

1995; Kleim et al., 1998a, 2004; Nudo et al., 1996; Pearce

et al., 2000). In one example, training squirrel monkeys in an

object-retrieval task—which required fine coordination of the

involved digits—caused an expansion of the cortical region

over which micro-stimulation could induce movements in those

same digits (Nudo et al., 1996). Similarly, in humans, repetition of

fine finger movements caused an expansion of the cortical re-

gion over which transcranial magnetic stimulation could induce

finger movements (Pascual-Leone et al., 1994, 1995). Critically,

this process seems to be unique to the early stages of learning

(Classen et al., 1998; Pascual-Leone et al., 1994), when the

animal is in a largely exploratory phase of learning and only

just starting to show signs of producing more stereotyped

behavior.

The expansion of the cortical map itself is difficult to interpret in

terms of the underlying neural representations, for cortical mi-

crocircuits consist of individual neurons that are highly heteroge-

neous. Therefore, it is noteworthy that the map expansion has

been observed to occur in concert with—and is perhaps ex-

plained by—an increase in the size of neural ensembles associ-

ated with the learned skill (Costa et al., 2004; Peters et al., 2014).

As an example, the population of cells in layer 2/3 of the motor

cortex of mice whose firing correlated with a particular motor
task was shown to expand as the animals repeatedly performed

a lever-press task (Peters et al., 2014). The total number of active

cells for each movement bout, however, remained constant,

meaning that the activated population of cells was more variable

from movement to movement during this phase. The initial

expansion of the ensemble size, therefore, provides a larger

pool from which to make a selection, increasing the likelihood

that a circuit would select a global versus a local maximum of

optimality.

Potential Mechanisms of Population Expansion. The changes

in brain ensemble activity are likely subserved by changes at

the synaptic level. In support of this notion, the learning of fore-

limb reaching tasks in rats has been shown to result in enhanced

synaptic responses in M1 excitatory neurons after learning

(Hodgson et al., 2005; Rioult-Pedotti et al., 1998). Such training

also briefly occluded the induction of LTP, suggesting that

LTP-like mechanisms are invoked during motor skill learning

(Hodgson et al., 2005; Rioult-Pedotti et al., 2000, 2007). More

recently, it was shown that thalamocortical inputs in the ratmotor

cortex are potentiated specifically for those cells that corre-

spond to the trained motor group (in this case, the distal forelimb

used for a reaching task), indicating that thalamo-recipient syn-

apses in the motor cortex undergo LTP in a use-dependent

fashion (Biane et al., 2016). Other indications of LTP have also

been observed to occur during motor learning in rodents, such

as the increase in dendritic spine size (Fu et al., 2012).

Motor learning has also been shown to cause an increase in

the density of incoming axonal projections (Sampaio-Baptista

et al., 2013) as well as an elaboration of the dendritic arbor of

M1 neurons (Gloor et al., 2015; Greenough et al., 1985). Further-

more, dendritic spines on M1 pyramidal cells increase in number

during the early stages of learning (Fu et al., 2012; Peters et al.,

2014; Xu et al., 2009), indicating the formation of new putative

synaptic sites. The individual newly formed spines are long last-

ing and thus might represent enduring physical traces of motor

learning (Xu et al., 2009). The increase in spine number overlaps

temporally with the expansion of the size of the neuronal

ensemble, suggesting that these two processes are potentially

related (Peters et al., 2014). The overall spine density subse-

quently returns to pre-learning levels, notably also in parallel

with the late-stage reduction in ensemble size (Chen et al.,

2015b; Xu et al., 2009). Interestingly, spines that form during

learning have been shown to spatially cluster on a subset of den-

dritic branches (Lai et al., 2012; Yang et al., 2014) as well as

within branches (Fu et al., 2012). Such an arrangement of den-

dritic spines might afford nonlinear behavior of dendrites,

increasing the efficacy of new spines in driving the neuron to

spike (Govindarajan et al., 2006).

The mechanisms by which the addition of dendritic spines is

controlled during learning are likely numerous, allowing the

recruitment of a variety of context-specific signals to influence

the process. Local inhibitory circuits may play a role in gating

synaptic changes onto motor cortical neurons during motor

learning (Chen et al., 2015b; Donato et al., 2013). One study

used longitudinal imaging to show that motor learning induces

a reduction in the number of inhibitory synapses onto apical den-

dritic tufts of excitatory neurons, the dendritic compartment

where the addition of dendritic spines is the most pronounced.
Neuron 92, November 23, 2016 713
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Figure 4. Hierarchical Mechanisms of Circuit Modification Shape
the Formation of Novel Motor Skills
(A) During the early phases of learning, the system explores a variety of
behavioral options, which coincides with an expansion of the neuronal
ensemble size in the motor cortex.
(B) Favorable outcomes reinforce a corresponding population of cells, shifting
the mean behavior in the process.
(C) The repetition of the selected behavior drives Hebbian plasticity in the
associated population of cells, eventually resulting in a refined ensemble and
highly stereotyped behavior.
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Furthermore, specific stimulation of a subset of inhibitory neu-

rons that selectively inhibit apical dendritic tufts impaired the sta-

bilization of new spines and motor learning (Chen et al., 2015b).

Thus, local inhibitory microcircuits can tune excitatory neurons

to be more or less plastic and determine their incorporation

into a learning-related ensemble.

In summary, the early stages of motor learning are marked by

an expansion of the neural ensemble in the motor cortex avail-

able for use by the learnedmotor skill, thus allowing the sampling

of a number of new circuit options (Figure 4A). This expansion is

potentially explained by plasticity of cells in the motor cortex that

renders these cells more synaptically connected and more sen-

sitive to synaptic input. Importantly, the motor cortex is a layered
714 Neuron 92, November 23, 2016
structure in which the superficial layer sends feedforward excita-

tion to deep-layer output neurons (Weiler et al., 2008), and

neurons in different layers likely exhibit distinct dynamics during

learning (Masamizu et al., 2014). It should also be noted that

other brain regions also contribute to the early phase of learning.

Indeed, signals from other regions likely act to drive or facilitate

the cortical plasticity described above. For instance, as

described in the previous section, the basal ganglia are thought

to provide important signals for increasing the variability of motor

behaviors via output from the globus pallidus internus. Deter-

mining how such signals interact with the cortical networks dur-

ing the processes described above requires further study. The

advent of new imaging approaches that allow for the simulta-

neous imaging of multiple brain regions, combined with projec-

tion-specific labeling and perturbation, will help to facilitate this

advancement.

Selection of a Mean: Creating Effective Motor Circuits

The exploration of movements and circuits necessitates that the

brain must select a circuit that can reliably produce the target

movement. How is such a selectionmade? A natural expectation

is that successful/unsuccessful pathways are reinforced/pun-

ished through feedback-based mechanisms. In fact, there is sig-

nificant evidence implicating the basal ganglia and cerebellum in

performing exactly these tasks for the selection of an appropriate

motor behavior. In particular, the basal ganglia are specialized in

reinforcement learning, as discussed in the previous section,

while the cerebellum is thought to facilitate learning based on

error signals. Thus, it is perhaps the joint efforts of these brain

areas that allow for the selection of an appropriate target

behavior and corresponding circuit. If behavioral exploration by

ensemble expansion broadens the distribution of behavioral op-

tions, these feedback-based mechanisms may dictate a new

mean around which the final distribution will center (Figure 4B).

Basal Ganglia. As briefly mentioned in the previous section, the

recruitment of the basal ganglia seems to occur in two parallel,

anatomically distinct streams. DMS, or the ‘‘associative’’ stria-

tum, which receives inputs from association cortices (e.g., the

prefrontal cortex) (McGeorge and Faull, 1989; Voorn et al.,

2004), is involved primarily in the early stages of motor learning,

probably reflecting associative learning to establish action goals

(Yin et al., 2009). Correspondingly, there is an increase in the glu-

tamatergic sensitivity of medium spiny neurons (MSNs, the pri-

mary output neurons of the striatum) in DMS during this period

(Yin et al., 2009), suggesting the occurrence of learning-induced

potentiation. In contrast, DLS, or ‘‘sensorimotor’’ striatum, which

receives sensory and motor inputs from a variety of cortical re-

gions, is primarily engaged during the later stages of learning,

when task performance starts to plateau (Yin et al., 2009). Like-

wise, the glutamatergic sensitivity of MSNs in this region was

found to increase only in the late stages of learning (Yin et al.,

2009). The changes in synaptic strength are likely due to poten-

tiation of currents through AMPA receptor-type glutamate re-

ceptors at the synaptic surface of MSNs (Yin et al., 2009).

Thus, LTP-like plastic changes of MSNs in these regions are

likely critical for motor learning. Consistent with this notion,

genetic removal of functional NMDA receptors, which are critical

for the induction of many forms of LTP, from MSNs impairs

motor learning (Beutler et al., 2011). The differential temporal
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recruitment of DMS and DLS suggests an evolving importance of

different information streams (i.e., associative versus sensori-

motor) for reward-mediated shaping of behavior, consistent

with the hierarchical reinforcement learning model (Haruno and

Kawato, 2006).

Cerebellum. Complementing the role of the basal ganglia, the

cerebellum is also critical in the learning of new motor skills

(Sanes et al., 1990). Cerebellar learning is thought to be driven

by error signals that indicate differences between the intended

movement and the one that was actually executed. The best-

studied cellular modifications observed in the cerebellum during

learning involve LTD of the parallel fiber-to-Purkinje cell synapse

(De Zeeuw and Yeo, 2005). This LTD is triggered by movement

errors originating from climbing fiber input (Ito and Kano,

1982). More prolonged bursts of activity from climbing fibers,

scaling with movement error, induce more complex spiking in

Purkinje cells. Thus, the size of the error proportionally increases

intracellular calcium levels and therefore the expression of LTD

(Yang and Lisberger, 2014). Cerebellar LTD has been repeatedly

observed to occur in response to learning and forms the basis of

many standard models of cerebellar learning. However, there is

also evidence that potentiation of the Purkinje cell response

(e.g., enhanced simple and complex spike discharge rate) oc-

curs during learning (Berthier and Moore, 1986; Ojakangas and

Ebner, 1994), and that there are accompanying structural modi-

fications, including the addition of dendritic spines. The acquisi-

tion of complex motor skills, for instance, has been shown to

increase the number of parallel fiber-to-Purkinje cell synapses

in the cerebellum (Kleim et al., 1998b). Furthermore, a recent

study showed that optogenetic activation of Purkinje cells was

sufficient to drive learned changes in the vestibulo-ocular reflex

(Nguyen-Vu et al., 2013), suggesting that Purkinje cell output, in

addition to changes in Purkinje cell inputs, can drive behavioral

modifications.

Motor Cortex. Basal ganglia and cerebellar circuits provide

major inputs to the motor cortex through the thalamus, so the

feedback-based learning in these circuits likely assists in select-

ing effective circuits in the motor cortex from the broadened

population initially explored. Less is known about mechanisms

that work within motor cortex to select appropriate circuits.

However, it has been proposed that dopamine plays an impor-

tant role in regulating spine plasticity in the motor cortex during

learning, suggesting a direct role of this neuromodulator in the

motor cortex, in addition to its indirect effects exerted through

the basal ganglia. Dopaminergic projections from the ventral

tegmental area are present in the motor cortex, and ablation of

dopaminergic terminals in themotor cortex impaired the learning

of a reaching task (Hosp et al., 2011). A subsequent study re-

vealed D2-type dopamine receptors mediate spine addition in

the motor cortex (Guo et al., 2015). The information conveyed

by dopaminergic input to the motor cortex during learning is still

unclear; dopamine could be actively selecting rewarding path-

ways, analogous to striatum, but it is also possible that it simply

functions as a permissive factor for normal plasticity.

Importantly, recent studies have indicated that there is signif-

icant degeneracy in the cortical populations corresponding to a

particular movement, i.e., there are multiple populations that are

effective in eliciting a similar motor behavior. Furthermore, early
motor movements that were by chance very similar to the expert

movement were shown to utilize a cortical population that did not

necessarily resemble the expert circuit in any clear way (Peters

et al., 2014). The only predictor of population activity selection

seems to be activity-induced transcriptional mechanisms, as

motor cortex neurons that activate the immediate early gene

Arc during motor learning are more likely to be active during

subsequent execution of the learned behavior (Cao et al.,

2015). Thus, the mechanisms and criteria by which cells are

selected for inclusion into a stable motor ensemble require

further investigation.

Refinement of a Final Learned Representation

Once a successful motor behavior has been identified, con-

tinued practice leads to a highly refined, low-variability version

of the skill. What are the circuit dynamics that correspond to

this change? Since the population of possible cells initially

expanded so as to increase behavioral variability, does the

population then decrease to reduce this variability?

In line with exactly this possibility, some studies suggest that

the initial expansion of the somatotopic map can be followed

by a period of contraction, returning the map to a near pre-

training size without a corresponding deterioration in the perfor-

mance of the skill (Molina-Luna et al., 2008; Pascual-Leone et al.,

1994). This phenomenon is echoed by several studies that sug-

gest an overall reduced level of cortical activation during execu-

tion of a highly practicedmotor behavior (Jenkins et al., 1994;Ma

et al., 2010; Picard et al., 2013; Toni et al., 1998; Ungerleider

et al., 2002; Wymbs and Grafton, 2015). For example, fMRI

measurements in humans showed that professional piano

players recruit smaller regions of cortex than control subjects

when performing a complex finger movement (Krings et al.,

2000). It should be noted, however, that other studies support

the notion that M1 activity actually increases during performance

of a highly learned skill (Floyer-Lea and Matthews, 2005; Karni

et al., 1995; Penhune and Doyon, 2002). This apparent discrep-

ancy could be due to differences in the nature of themotor tasks,

or perhaps the different time points used. Nonetheless, consis-

tent with the reduction in activation size during skilled move-

ments, the later stages of learning in mice yield a renormalization

of the neuronal ensemble size in layer 2/3 of motor cortex. This

phase of learning coincides with increased rate of spine elimina-

tion on the dendrites of excitatory neurons (Peters et al., 2014). It

is likely that this process of refinement is at least partially disso-

ciable from the feedback-based selection discussed earlier, in

that the refinement process is selecting from a variety of circuits

that can all successfully lead to the desired motor output.

While outcome-mediated feedback likely still provides basic

boundaries for the behavior to ensure that it is shaped based

on outcome, the existing motor-related ensemble at this

stage of learning likely operates mostly within these bounds.

Thus, plasticity acting on such an ensemble may rely mostly

on outcome-independent mechanisms. Refinement in this

context can therefore be thought of as a reduction in the

circuit-level degeneracy for the corresponding motor skill

(Figure 4C).

How could this degeneracy reduction be achieved? The

best-known form of feedback-independent plasticity is the

classical Hebbian form. Such a mechanism of selectively
Neuron 92, November 23, 2016 715



Neuron

Review
strengthening connections between co-active neurons, com-

bined with homeostatic plasticity to keep the total synaptic

strengths constant, could generate a local circuit that can auton-

omously generate a particular activity pattern in response to

repeated activation coinciding with the repetition of the motor

skill. In support of this idea, modeling work suggests that uncon-

strained repetition of an artificial neural network, accounting for

only Hebbian mechanisms of plasticity and heterosynaptic

competition, can lead to the emergence of a stable, reproducible

activity pattern (Fiete et al., 2010).

This process could thus be classified as unsupervised

learning, in which neither an error nor a reward signal need be

present for the system to continue to evolve. Unsupervised

learning is likely of primary importance for the later stages of skill

learning, when a basic model of the behavior has already been

generated, allowing mere repetition to ultimately achieve effort-

less, reproducible performance. Motor cortex is likely a central

locus of unsupervised learning, as suggested previously (Doya,

1999). We again note that it is probable that unsupervised

learning and feedback-based mechanisms overlap to a certain

degree, with feedback continuing to provide a level of supervi-

sion over the behavioral products of the Hebbian plasticity in

the cortex.

As a final note, it should be pointed out that the role of motor

cortex in motor learning and movement execution is debated.

While motor cortex is unambiguously required for the learning

of motor skills, its involvement in the execution of learned or

highly stereotyped movements is controversial. A recent study

showed that post-learning lesion of motor cortex did not affect

the execution of stereotyped sequences of movements learned

in an unconstrained manner (Kawai et al., 2015), while another

study has shown that the same manipulation eliminated the abil-

ity to perform a skilled reach-and-grasp task (Conner et al.,

2005). A unifying principle seems to be that the more dexterous

and awkward the learned movements, the more dependent the

execution is on the motor cortex. Furthermore, the degree of

training may also be an important factor such that overtraining

may gradually reduce cortical dependence.

Concluding Remarks
Wehave reviewed a variety of changes in neural activity and con-

nectivity patterns during sensorimotor learning. While these

changes underscore the dynamic nature of the sensorimotor

pathway, drawing a causal link between neural changes and

behavioral improvement remains a fundamental challenge in

the study of learning. This is especially challenging in cases

where neural changes are highly distributed across many brain

areas. For example, we have reviewed that perceptual learning

induces neural changes at multiple levels of sensory processing.

An ideal test for the necessity of neural changes in learningwould

be to block the changes without affecting other aspects of circuit

functions. Pharmacological or genetic inactivation of NMDA re-

ceptors has been used as a means to assess the necessity of

synaptic plasticity in a brain region of interest. However,

NMDA receptor signaling is required not only for synaptic plas-

ticity but also for basal synaptic transmission, so the interpreta-

tion of these experiments is not straightforward. As a potentially

more specific approach, a study reported the development of
716 Neuron 92, November 23, 2016
a molecular genetic tool that is designed to reverse recent syn-

aptic potentiation events when activated by light (Hayashi-

Takagi et al., 2015). When this tool was activated in the motor

cortex following training, impairment in motor skill learning was

observed. Another study identified a plasticity event in a specific

class of inhibitory neurons associated with motor skill learning,

which could play a permissive role in allowing excitatory circuit

plasticity. The authors attempted to test this idea by controlling

the activity of these inhibitory neurons using optogenetics, which

blocked normal synaptic plasticity in excitatory neurons and

impaired motor skill learning (Chen et al., 2015b). Additionally,

an interesting study reported that the expression of conditioned

fear response could be inactivated and reactivated by optoge-

netic protocols that would weaken or strengthen the synapses

of auditory inputs onto the amygdala (Nabavi et al., 2014). While

the need for the test of specificity for thesemanipulations cannot

be overstated, the expanding molecular toolkit will allow re-

searchers to perform increasingly more specific manipulations

to test the causality of neural changes in learning.

Lastly, we note that the pursuit of the precise neural changes

that support learning is further confounded by the fundamentally

fluid nature of memory. It has long been appreciated that the

stability of amemory is dependent on time, such that older mem-

ories are often more stably maintained. This implies that the un-

derlying neural mechanisms, including involved brain regions,

may be dynamically shifting over time. In fact, an emerging prin-

ciple that we proposed in the associative learning section is a

gradual shortening of the pathway connecting sensory inputs

to motor outputs. Such fluidity and distributed nature of memory

trace makes it a major challenge to identify the precise changes

in brain circuits that mediate behavioral improvement during

learning. Major progress would be afforded by holistic, brain-

wide observations of changes combined with manipulations

with high molecular, temporal, and spatial precision.
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Hasan,M.T., Hernández-González, S., Dogbevia, G., Treviño, M., Bertocchi, I.,
Gruart, A., and Delgado-Garcı́a, J.M. (2013). Role of motor cortex NMDA re-
ceptors in learning-dependent synaptic plasticity of behaving mice. Nat. Com-
mun. 4, 2258.

Hayashi-Takagi, A., Yagishita, S., Nakamura, M., Shirai, F., Wu, Y.I., Losh-
baugh, A.L., Kuhlman, B., Hahn, K.M., and Kasai, H. (2015). Labelling and op-
tical erasure of synaptic memory traces in the motor cortex. Nature 525,
333–338.
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Oram, M.W., Földiák, P., Perrett, D.I., and Sengpiel, F. (1998). The ‘Ideal
Homunculus’: decoding neural population signals. Trends Neurosci. 21,
259–265.
Otazu, G.H., Chae, H., Davis, M.B., and Albeanu, D.F. (2015). Cortical feed-
back decorrelates olfactory bulb output in awake mice. Neuron 86, 1461–
1477.

Pascual-Leone, A., Grafman, J., and Hallett, M. (1994). Modulation of cortical
motor output maps during development of implicit and explicit knowledge.
Science 263, 1287–1289.

Pascual-Leone, A., Nguyet, D., Cohen, L.G., Brasil-Neto, J.P., Cammarota, A.,
and Hallett, M. (1995). Modulation of muscle responses evoked by transcranial
magnetic stimulation during the acquisition of new fine motor skills.
J. Neurophysiol. 74, 1037–1045.

Pasupathy, A., and Miller, E.K. (2005). Different time courses of learning-
related activity in the prefrontal cortex and striatum. Nature 433, 873–876.

Pearce, A.J., Thickbroom, G.W., Byrnes, M.L., and Mastaglia, F.L. (2000).
Functional reorganisation of the corticomotor projection to the hand in skilled
racquet players. Exp. Brain Res. 130, 238–243.

Penhune, V.B., and Doyon, J. (2002). Dynamic cortical and subcortical net-
works in learning and delayed recall of timed motor sequences. J. Neurosci.
22, 1397–1406.

Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., and Lau-
rent, G. (2002). Oscillations and sparsening of odor representations in the
mushroom body. Science 297, 359–365.

Peron, S.P., Freeman, J., Iyer, V., Guo, C., and Svoboda, K. (2015). A cellular
resolution map of barrel cortex activity during tactile behavior. Neuron 86,
783–799.

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R.J., and Frith, C.D. (2006).
Dopamine-dependent prediction errors underpin reward-seeking behaviour
in humans. Nature 442, 1042–1045.

Peters, A.J., Chen, S.X., and Komiyama, T. (2014). Emergence of reproducible
spatiotemporal activity during motor learning. Nature 510, 263–267.

Petreanu, L., Gutnisky, D.A., Huber, D., Xu, N.L., O’Connor, D.H., Tian, L., Lo-
oger, L., and Svoboda, K. (2012). Activity in motor-sensory projections reveals
distributed coding in somatosensation. Nature 489, 299–303.

Petrides, M. (1982). Motor conditional associative-learning after selective pre-
frontal lesions in the monkey. Behav. Brain Res. 5, 407–413.

Petrov, A.A., Dosher, B.A., and Lu, Z.L. (2005). The dynamics of perceptual
learning: an incremental reweighting model. Psychol. Rev. 112, 715–743.

Picard, N., Matsuzaka, Y., and Strick, P.L. (2013). Extended practice of amotor
skill is associated with reduced metabolic activity in M1. Nat. Neurosci. 16,
1340–1347.

Poort, J., Khan, A.G., Pachitariu, M., Nemri, A., Orsolic, I., Krupic, J., Bauza,
M., Sahani, M., Keller, G.B., Mrsic-Flogel, T.D., and Hofer, S.B. (2015).
Learning enhances sensory and multiple non-sensory representations in pri-
mary visual cortex. Neuron 86, 1478–1490.

Puig, M.V., and Miller, E.K. (2012). The role of prefrontal dopamine D1 recep-
tors in the neural mechanisms of associative learning. Neuron 74, 874–886.

Puig, M.V., and Miller, E.K. (2015). Neural substrates of dopamine D2 receptor
modulated executive functions in the monkey prefrontal cortex. Cereb. Cortex
25, 2980–2987.

Rao, R.P., and Ballard, D.H. (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nat.
Neurosci. 2, 79–87.

Recanzone, G.H., Merzenich, M.M., Jenkins, W.M., Grajski, K.A., and Dinse,
H.R. (1992). Topographic reorganization of the hand representation in
cortical area 3b owl monkeys trained in a frequency-discrimination task.
J. Neurophysiol. 67, 1031–1056.

Recanzone, G.H., Schreiner, C.E., and Merzenich, M.M. (1993). Plasticity in
the frequency representation of primary auditory cortex following discrimina-
tion training in adult owl monkeys. J. Neurosci. 13, 87–103.

Reynolds, J.H., Pasternak, T., and Desimone, R. (2000). Attention increases
sensitivity of V4 neurons. Neuron 26, 703–714.
Neuron 92, November 23, 2016 719

http://refhub.elsevier.com/S0896-6273(16)30779-6/sref88
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref88
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref88
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref88
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref89
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref89
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref89
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref90
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref90
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref91
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref91
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref91
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref92
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref92
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref92
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref93
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref93
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref93
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref93
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref94
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref94
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref95
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref95
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref96
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref96
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref96
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref97
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref97
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref98
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref98
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref99
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref99
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref99
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref100
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref100
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref100
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref101
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref101
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref102
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref102
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref102
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref103
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref103
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref103
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref104
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref104
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref105
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref105
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref105
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref106
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref106
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref106
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref107
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref107
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref107
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref108
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref108
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref109
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref109
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref109
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref110
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref110
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref110
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref111
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref111
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref111
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref112
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref112
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref112
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref112
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref113
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref113
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref114
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref114
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref114
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref115
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref115
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref115
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref116
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref116
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref116
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref117
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref117
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref117
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref118
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref118
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref118
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref119
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref119
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref120
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref120
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref120
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref121
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref121
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref122
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref122
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref123
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref123
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref123
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref124
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref124
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref124
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref124
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref125
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref125
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref126
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref126
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref126
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref127
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref127
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref127
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref128
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref128
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref128
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref128
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref129
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref129
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref129
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref130
http://refhub.elsevier.com/S0896-6273(16)30779-6/sref130


Neuron

Review
Rioult-Pedotti, M.S., Friedman, D., Hess, G., and Donoghue, J.P. (1998).
Strengthening of horizontal cortical connections following skill learning. Nat.
Neurosci. 1, 230–234.

Rioult-Pedotti, M.S., Friedman, D., and Donoghue, J.P. (2000). Learning-
induced LTP in neocortex. Science 290, 533–536.

Rioult-Pedotti, M.S., Donoghue, J.P., and Dunaevsky, A. (2007). Plasticity of
the synaptic modification range. J. Neurophysiol. 98, 3688–3695.

Romo, R., Hernández, A., Zainos, A., and Salinas, E. (2003). Correlated
neuronal discharges that increase coding efficiency during perceptual discrim-
ination. Neuron 38, 649–657.

Rudebeck, P.H., Mitz, A.R., Chacko, R.V., and Murray, E.A. (2013). Effects of
amygdala lesions on reward-value coding in orbital and medial prefrontal cor-
tex. Neuron 80, 1519–1531.

Ruff, D.A., and Cohen, M.R. (2014). Attention can either increase or decrease
spike count correlations in visual cortex. Nat. Neurosci. 17, 1591–1597.

Rupniak, N.M., and Gaffan, D. (1987). Monkey hippocampus and learning
about spatially directed movements. J. Neurosci. 7, 2331–2337.

Rushworth, M.F., Nixon, P.D., and Passingham, R.E. (1997). Parietal cortex
and movement. I. Movement selection and reaching. Exp. Brain Res. 117,
292–310.

Saddoris, M.P., Gallagher, M., and Schoenbaum, G. (2005). Rapid associative
encoding in basolateral amygdala depends on connections with orbitofrontal
cortex. Neuron 46, 321–331.

Sampaio-Baptista, C., Khrapitchev, A.A., Foxley, S., Schlagheck, T., Scholz,
J., Jbabdi, S., DeLuca, G.C., Miller, K.L., Taylor, A., Thomas, N., et al.
(2013). Motor skill learning induces changes in white matter microstructure
and myelination. J. Neurosci. 33, 19499–19503.

Sanes, J.N., Dimitrov, B., and Hallett, M. (1990). Motor learning in patients with
cerebellar dysfunction. Brain 113, 103–120.

Schoenbaum, G., Chiba, A.A., and Gallagher, M. (1998). Orbitofrontal cortex
and basolateral amygdala encode expected outcomes during learning. Nat.
Neurosci. 1, 155–159.

Schoenbaum, G., Roesch, M.R., Stalnaker, T.A., and Takahashi, Y.K. (2009).
A new perspective on the role of the orbitofrontal cortex in adaptive behaviour.
Nat. Rev. Neurosci. 10, 885–892.

Schoups, A., Vogels, R., Qian, N., and Orban, G. (2001). Practising orientation
identification improves orientation coding in V1 neurons. Nature 412, 549–553.

Schultz, W., Apicella, P., and Ljungberg, T. (1993). Responses of monkey
dopamine neurons to reward and conditioned stimuli during successive steps
of learning a delayed response task. J. Neurosci. 13, 900–913.

Seamans, J.K., and Yang, C.R. (2004). The principal features andmechanisms
of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74, 1–58.

Seriès, P., Latham, P.E., and Pouget, A. (2004). Tuning curve sharpening for
orientation selectivity: coding efficiency and the impact of correlations. Nat.
Neurosci. 7, 1129–1135.

Shan, Q., Christie, M.J., and Balleine, B.W. (2015). Plasticity in striatopallidal
projection neurons mediates the acquisition of habitual actions. Eur. J. Neuro-
sci. 42, 2097–2104.

Shen, W., Flajolet, M., Greengard, P., and Surmeier, D.J. (2008). Dichotomous
dopaminergic control of striatal synaptic plasticity. Science 321, 848–851.

Sheth, S.A., Abuelem, T., Gale, J.T., and Eskandar, E.N. (2011). Basal ganglia
neurons dynamically facilitate exploration during associative learning.
J. Neurosci. 31, 4878–4885.

Shmuelof, L., and Krakauer, J.W. (2014). Recent insights into perceptual and
motor skill learning. Front. Hum. Neurosci. 8, 683.

Smith, K.S., and Graybiel, A.M. (2013). A dual operator view of habitual
behavior reflecting cortical and striatal dynamics. Neuron 79, 361–374.

Smith-Roe, S.L., and Kelley, A.E. (2000). Coincident activation of NMDA and
dopamine D1 receptors within the nucleus accumbens core is required for
appetitive instrumental learning. J. Neurosci. 20, 7737–7742.
720 Neuron 92, November 23, 2016
Steinberg, E.E., Keiflin, R., Boivin, J.R., Witten, I.B., Deisseroth, K., and Janak,
P.H. (2013). A causal link between prediction errors, dopamine neurons and
learning. Nat. Neurosci. 16, 966–973.

Sutton, R.S., and Barto, A.G. (1998). Reinforcement Learning: An Introduction
(MIT Press).

Takahashi, H., and Magee, J.C. (2009). Pathway interactions and synaptic
plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62,
102–111.

Teich, A.F., and Qian, N. (2003). Learning and adaptation in a recurrent model
of V1 orientation selectivity. J. Neurophysiol. 89, 2086–2100.

Tervo, D.G.R., Proskurin, M., Manakov, M., Kabra, M., Vollmer, A., Branson,
K., and Karpova, A.Y. (2014). Behavioral variability through stochastic choice
and its gating by anterior cingulate cortex. Cell 159, 21–32.

Toni, I., Krams,M., Turner, R., and Passingham, R.E. (1998). The time course of
changes during motor sequence learning: a whole-brain fMRI study. Neuro-
image 8, 50–61.

Ungerleider, L.G., Doyon, J., and Karni, A. (2002). Imaging brain plasticity dur-
ing motor skill learning. Neurobiol. Learn. Mem. 78, 553–564.

Vinje, W.E., and Gallant, J.L. (2000). Sparse coding and decorrelation in pri-
mary visual cortex during natural vision. Science 287, 1273–1276.

Voorn, P., Vanderschuren, L.J., Groenewegen, H.J., Robbins, T.W., and Pen-
nartz, C.M. (2004). Putting a spin on the dorsal-ventral divide of the striatum.
Trends Neurosci. 27, 468–474.

Waelti, P., Dickinson, A., and Schultz, W. (2001). Dopamine responses comply
with basic assumptions of formal learning theory. Nature 412, 43–48.

Wallis, J.D., and Miller, E.K. (2003). Neuronal activity in primate dorsolateral
and orbital prefrontal cortex during performance of a reward preference
task. Eur. J. Neurosci. 18, 2069–2081.
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