
Article
Balancing the Robustness
 and Efficiency of Odor
Representations during Learning
Highlights
d Learning modifies the robustness and efficiency of odor

codes in olfactory bulb

d Learning of difficult discrimination enhances robustness

d Learning of easy discrimination enhances efficiency

d Task learning and passive exposure induce qualitatively

similar changes
Chu et al., 2016, Neuron 92, 174–186
October 5, 2016 ª 2016 Elsevier Inc.
http://dx.doi.org/10.1016/j.neuron.2016.09.004
Authors

Monica W. Chu, Wankun L. Li,

Takaki Komiyama

Correspondence
tkomiyama@ucsd.edu

In Brief

Robustness and efficiency are

antagonistic factors that affect the

effectiveness of sensory codes. Using

longitudinal two-photon calcium imaging,

Chu et al. (2016) find that learning

balances the robustness and efficiency of

olfactory bulb odor codes bidirectionally

depending on odorant similarity.

mailto:tkomiyama@ucsd.�edu
http://dx.doi.org/10.1016/j.neuron.2016.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2016.09.004&domain=pdf


Neuron

Article
Balancing the Robustness and Efficiency
of Odor Representations during Learning
Monica W. Chu,1 Wankun L. Li,1 and Takaki Komiyama1,2,3,*
1Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences
2JST, PRESTO

University of California, San Diego, La Jolla, CA 92093, USA
3Lead Contact

*Correspondence: tkomiyama@ucsd.edu

http://dx.doi.org/10.1016/j.neuron.2016.09.004
SUMMARY

For reliable stimulus identification, sensory codes
have to be robust by including redundancy to com-
bat noise, but redundancy sacrifices coding effi-
ciency. To address how experience affects the
balance between the robustness and efficiency of
sensory codes, we probed odor representations in
the mouse olfactory bulb during learning over a
week, using longitudinal two-photon calcium imag-
ing. When mice learned to discriminate between
two dissimilar odorants, responses of mitral cell
ensembles to the two odorants gradually became
less discrete, increasing the efficiency. In contrast,
when mice learned to discriminate between two
very similar odorants, the initially overlapping repre-
sentations of the two odorants became progres-
sively decorrelated, enhancing the robustness.
Qualitatively similar changes were observed when
the same odorants were experienced passively, a
condition that would induce implicit perceptual
learning. These results suggest that experience
adjusts odor representations to balance the robust-
ness and efficiency depending on the similarity of
the experienced odorants.

INTRODUCTION

The stimulus space in the environment is infinitely large and

continuous. Sensory systems need to effectively represent these

stimuli according to perceptual categories, which are often

defined through learning. For example, it has been shown that

parents of identical twins learn to use subtle visual cues to

discriminate between their own twin children, but the effect of

this learning is highly specific and does not generalize to other

twins (Saether and Laeng, 2008). We consider the effect of

learning on two factors related to the effectiveness of sensory

representations. First, the representations need to be robust,

maintaining a consistent identification of the same stimuli across

multiple trials, which can be achieved by encoding redundant

information across many channels. Second, representations
174 Neuron 92, 174–186, October 5, 2016 ª 2016 Elsevier Inc.
should be efficient, allowing the encoding of a large number of

distinct stimulus categories within the constraint of a finite ca-

pacity of sensory systems. We note that efficiency in this sense

is not directly related tometabolic costs but instead is a measure

of how many distinct stimuli a system can encode. In a system

with stable signal-to-noise ratio within individual channels, as

well as biological levels of interneuronal correlations, robustness

and efficiency are opposing factors that are at odds with

each other. For example, if each stimulus is represented by a

completely distinct ensemble of neurons, it would be very robust

but inefficient, limiting coding capacity (Figure 1A, top). In

contrast, if representations of different stimuli are highly overlap-

ping, it would be efficient but sensitive to noise (Figure 1A,

bottom). Here we address how these two factors are adjusted

during learning in the olfactory system of mice.

Olfactory transduction begins when an odorant binds to

odorant receptors on olfactory sensory neurons (OSNs), whose

cell bodies lie in the nasal epithelium. Each OSN expresses

only one of �1,000 odorant receptors (Buck and Axel, 1991),

and all OSNs expressing a given receptor converge their axons

onto one or two glomeruli in the olfactory bulb (Mombaerts

et al., 1996). Here the OSN axons synapse onto the dendrites

of mitral/tufted cells, the principal neurons of the bulb, each of

which projects their dendrites to a single glomerulus and in

turn sends out axons to higher areas of the brain. Thus, olfactory

information entering higher brain areas from the olfactory bulb is

encoded within the activity of mitral/tufted cell ensembles.

The olfactory bulb does not function as a passive relay station

from the nose to higher brain areas. Instead, it processes olfac-

tory information owing to the functions of the large population of

local interneurons (Arevian et al., 2008; Banerjee et al., 2015;

Isaacson and Strowbridge, 1998; Kato et al., 2013; Schoppa

et al., 1998; Yokoi et al., 1995). Additionally, feedback from the

olfactory cortex and neuromodulatory areas modulates mitral

cell odorant responses and is important for olfactory tasks

such as odor discrimination and detection (Boyd et al., 2012;

Chapuis and Wilson, 2013; Chaudhury et al., 2009; Doucette

and Restrepo, 2008; Kapoor et al., 2016; Linster et al., 2001;

Ma and Luo, 2012; Otazu et al., 2015). These modulatory func-

tions are sensitive to brain states, as neural activity in the olfac-

tory bulb during the awake state has been shown to be dramat-

ically different from that during the anesthetized state (Blauvelt

et al., 2013; Kato et al., 2012; Kollo et al., 2014; Rinberg and

Gelperin, 2006). Recent studies in awake behaving animals are
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Experimental Setup Figure 1. Longitudinal Mitral Cell Imaging

during Week-Long Behavioral Paradigms

(A) Schematic demonstrating the tradeoff between

robustness and efficiency in the encoding of

stimuli within a finite neural activity space (rect-

angles). (Top) An extreme example of robust

coding: three discrete sensory stimuli (colored

circles) are encoded with high robustness, or

redundancy. (Bottom) An example of a system

with higher efficiency, or the capacity to encode

more stimuli, than the system above within the

same neural space. This enhanced efficiency oc-

curs at the expense of robustness.

(B) Schematic of the olfactory bulb. AAV2.1-FLEX-

hsyn-GCaMP6f was injected into the right olfac-

tory bulb of Pcdh21-cre mice to express GCaMP6f

specifically in mitral cells.

(C) Experimental timeline. Mice first go through a

pre-training period with two sets of odorant pairs

(first pre-training pair, citral/limonene; second

pre-training pair, +-carvone/cumene) before they

started the imaging period, where they perform the

discrimination task with a novel odorant pair.

(D) Trial structure of the discrimination task.

(E) Schematic of imaging setup.

(F) A field of mitral cells expressing GCaMP6f on

the first day of imaging (left) and 6 days later (right).
beginning to shed light on the way olfactory experience and

learning alter the dynamics of olfactory circuits (Abraham et al.,

2014; Doucette and Restrepo, 2008; Doucette et al., 2011; Li

et al., 2015; Shakhawat et al., 2014). However, a comprehensive

understanding of how different types of experience affect odor

representations in the early stages of processing is still lacking.

Here we attempt a systematic examination of changes in

mitral cell odor representations during four types of week-long

odor experience: active learning, where mice perform either an

‘‘easy’’ or ‘‘difficult’’ discrimination task between dissimilar or

similar odorant pairs, and passive experience, where mice are

passively and repeatedly exposed to the same disimilar or similar

pair of odorants as in the behavioral tasks. By using longitudinal

two-photon calcium imaging, wemonitored the responses of the

same populations of mitral cells over a week. Our results indicate

that the difficulty level of discrimination has a profound impact on

the changes of mitral cell odor representations.

RESULTS

In all conditions, Pcdh21-Cre mice were injected in the right

olfactory bulb with Cre-dependent AAV to express GCaMP6f

specifically in mitral/tufted cells (Figure 1B). In the discrimination

task (Komiyama et al., 2010), one of two odorants was presented

in each trial for 4 s, followed by the answer period during which

mice were supposed to lick in response to one of the odorants

for a water reward and withhold from licking to the other odorant.

Mice were trained daily, one session per day, and performed

138.6 ± 1.9 (mean ± SEM) trials per session. Mice first underwent
pre-training, which familiarized them with the task with odorant

pairs that were different from those used for the imaging exper-

iments (Figures 1C and 1D). After pre-training, mice performed

the discrimination task with a novel pair of odorants over

7 days while we imaged the responses of mitral cell ensembles

(67 ± 5.4 mitral cells per mouse, mean ± SEM). The same popu-

lation of mitral cells was imaged in each session (Figures 1E and

1F) (Kato et al., 2012).

Easy Discrimination Training Results in More Efficient
Mitral Cell Encoding
We first asked whether and how mitral cell odor representations

were altered during a week of discrimination training with a pair

of distinct monomolecular odorants (Heptanal, S+ or ‘‘odorant 1’’

and Ethyl Tiglate, S� or ‘‘odorant 2’’; n = 8 mice). In this easy

discrimination task, mice mastered the task within the first tens

of trials in the first session and maintained a high success rate

on subsequent sessions (Figure 2A).

Each odorant elicited responses from a large fraction of mitral

cells on the first day of training. On average, 41.6%± 7.5% of the

imaged mitral cell population exhibited significant changes in

fluorescence to at least one odorant during the odor period.

The odorant responses included both increases and decreases

in fluorescence (day 1, 72.3% ± 9.0% of responses were in-

creases and 27.7% ± 9.0% were decreases; day 7, 72.2% ±

7.0% of responses were increases and 27.8% ± 7.0% were de-

creases), consistent with previous reports (Bathellier et al., 2008;

Davison and Katz, 2007; Doucette and Restrepo, 2008; Fuentes

et al., 2008; Gschwend et al., 2012; Kato et al., 2012; Kollo et al.,
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Figure 2. Mitral Cell Odorant Responses during the Easy Discrimination Task
(A) (Left) Behavioral performance on day 1 of the easy discrimination task. Fraction of correct trials is shown for each block of 10 trials (n = 8 mice). (Right)

Behavioral performance for each session (day) during the easy discrimination task.

(B) Mean odorant responses of three example mitral cells during single sessions. Horizontal bars indicate odorant periods (4 s).

(C) Spatial distribution of responsive (cyan) and divergent (magenta) neurons on day 1 (left) and day 7 (right) for an example mouse during easy discrimination

training. Non-responsive neurons are shown in white.

(D) Fractions of neurons classified as responsive (black) and divergent (magenta) on each day. Both fractions show a significant decrease (Pearson correlation;

responsive, r = �0.43, p < 0.01; divergent, r = �0.44, p < 0.01).

(E) Fraction of divergent neurons out of responsive neurons is maintained throughout easy discriminating training (Pearson correlation; r = �0.03, p = 0.82).

(F) Sensitivity index (d0) of divergent neurons decreases with easy discrimination training (Pearson correlation; r = �0.28, p < 0.05).

(G) Decoder accuracy during easy discrimination training significantly decreases (Pearson correlation; r = �0.42, p < 0.01)

(H) Coding of odorant identity in mitral cell ensembles is distributed. For each mouse, the mean decoder accuracy was calculated after removing one additional

neuron at a time in the descending order of their contribution to decoder accuracy (i.e., the drop in decoder accuracy caused by removal; Experimental

Procedures).

All values in line plots are mean ± SEM.
2014; Li et al., 2015; Nagayama et al., 2004; Rinberg and Gel-

perin, 2006; Shusterman et al., 2011; Yokoi et al., 1995). Addi-

tionally, a large fraction of the responsive mitral cells exhibited

divergent responses between the two odorants on day 1 (Figures

2B–2D and S1).

During the week-long training paradigm, we observed notable

changes in the odorant responses of individual mitral cells. First,

there was a gradual decrease in the fraction of responsive mitral

cells, from 41.6% ± 7.5% responsive on day 1 to 16.6% ± 4.9%

on day 7 (Figure 2D). Both of the two odorants showed a similar

level of sparsening during training (Figure S2). Second, the frac-
176 Neuron 92, 174–186, October 5, 2016
tion of cells whose responses significantly discriminate the two

odorants (‘‘divergent cells’’) also decreased (from 33.1% ±

6.0%on day 1 to 11.8%± 3.0%on day 7) (Figure 2D). As a result,

the proportion of divergent mitral cells out of the responsive pop-

ulation on each day was maintained (Figure 2E). Next we quan-

tified the discriminability of individual divergent cells using the

sensitivity index d0. The average sensitivity index of mitral cells

classified as divergent on each day decreased slightly with

learning (Figure 2F). Thus, during the learning of the easy

discrimination task, information about odorant identity became

encoded in fewer mitral cells and less robustly in individual cells.
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Given these changes in mitral cell odorant responses, we next

asked whether the quality of encoding of odorant identity by

mitral cell populations changed during learning. To this end,

we performed a decoder analysis to test how well the represen-

tations of the two odorants were separated. Briefly, the popula-

tion response in each trial was expressed as a high dimensional

vector, and we asked whether the vector of a given trial was

closer to the centroid of the trials (excluding the trial of interest)

of the same odorant (correct classification) or of the other

odorant (incorrect classification). We repeated this procedure

for every trial and calculated the frequency of correct classifica-

tion on each day (Experimental Procedures). On the first day,

decoder performance was nearly perfect, with an average of

95.4% ± 1.1% correct classifications, reflecting the discrete

representations of the two dissimilar odorants (Figure 2G). The

decoder performance significantly decreased on subsequent

training days, with a mean of 83.6% ± 3.1% correct classifica-

tions on day 7. Other methods of decoding, namely linear

discriminant analysis (LDA) and support vector machine (SVM),

yielded similar results (Figure S3). In contrast, we found that

the correlation coefficient, a commonly used measure for the

similarity of ensemble activity, was sensitive to the sparsening

in our dataset and proved not to be a reliable measure of activity

separability (Figure S4). Thus, below we focused on decoder

analysis. We note that the imperfect decoder performance after

training, which is below the behavioral performance of the mice

(Figure 2A), is likely due to the limited number of mitral cells used

for the decoder, as mice have access to a much larger popula-

tion of mitral cells to accurately identify the odorants. Finally, to

assess whether the decoder performance relies on a small num-

ber of highly divergent mitral cells or uses information distributed

across many mitral cells, we calculated how the decoder accu-

racy degrades as we reduce the number of mitral cells (Experi-

mental Procedures). The decoder accuracy gradually deterio-

rated as we removed the most informative mitral cell at each

permutation, suggesting that the information about odorant
Figure 3. Mitral Cell Odorant Responses during the Difficult Discrimin

(A) Behavioral performance during the difficult discrimination task (n = 10 mice).

(B) Mean odorant responses of three example mitral cells during difficult discrim

(C) Fractions of neurons classified as responsive (black) and divergent (magenta

correlation; r = �0.45, p < 0.001), while the divergent fraction remains stable (Pe

(D) Spatial distribution of responsive (cyan) and divergent (magenta) neurons on d

training.

(E) Fraction of divergent neurons out of responsive neurons increases throughou

(F) The sensitivity index (d0 ) of divergent neurons increases with difficult discrimin

(G) Population decoder accuracy is enhanced during difficult discrimination train

(H) Coding of odorant identity in mitral cell ensembles is distributed.

(I) Improvement in decoder accuracy is not due to changes in interneuronal co

pendently for each cell to eliminate noise correlation, decoder accuracy slightly

r = 0.23, p = 0.07).

(J) The trial-by-trial variance of ensemble activity, calculated as the sum of the co

learning (Pearson correlation; r = �0.04, p = 0.72).

(K) Mean square distance between odor centroids (Methods) significantly increa

(L) Mean square distance between odor centroids and the decoder accuracy are

(M) Distribution of all hit, correct rejection (CR), and false alarm (FA) responses o

distributions are distinct (bootstrap, p < 0.001) and the FA trial distribution lies b

(N) Probability of false alarms in all odorant 2 trials is higher when mitral cell re

r = �0.69, p < 0.001).

All values in line plots are mean ± SEM.
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identity is highly distributed. This trend was generally maintained

throughout training (Figure 2H).

In summary, the easy discrimination task resulted in a

gradually smaller separability of the representations of the

two dissimilar odorants. We reasoned that this counterintuitive

change may be due to the fact that the two odorants were very

different. In this case, the discrimination is very easy and thus

not the limiting factor of behavioral performance, which

may allow the system to reduce the robustness of odor repre-

sentations and prioritize the efficiency. If so, the difficulty

level of discrimination may be an important factor determining

the directionality of changes, a notion that we tested in the

following section.

Difficult Discrimination Training Results in More Robust
Encoding of Odorant Identity
In the difficult discrimination task, a separate cohort of mice

(n = 10) were imaged while they were trained with a pair of binary

odorant mixtures after the pre-training phase. Odorants were

mixed at very similar ratios (odorant 1, 52% heptanal/48% ethyl

tiglate; odorant 2, 48% heptanal/52% ethyl tiglate) to ensure the

difficulty of discrimination. These ratios were chosen based on

results from pilot experiments which tested several ratios in a

separate set of mice (data not shown). In contrast to the easy

discrimination task, which all mice mastered within the first

day, mice demonstrated a slower learning of the difficult discrim-

ination task, suggesting that the similar odorant mixtures were

more challenging to discriminate. On the first day, mice had a

mean success rate of 53.3% ± 1.0%, indicating that mice were

initially unable to distinguish between the odorant mixtures.

The performance gradually improved on subsequent days and

mice required on average 4 days to perform above an 80% suc-

cess rate (Figure 3A).

During this week-long training, we observed notable changes

in individual mitral cell responses. First, as observed during easy

discrimination, there was a sparsening of mitral cell responses,
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with a decrease from 37.8% ± 4.2% responsive on day 1 to

17.6% ± 3.8% responsive on day 7. However, the fraction of

mitral cells with divergent responses remained stable (Figures

3B–3D). As a result, the fraction of divergent mitral cells among

those that are responsive increased with learning (Figure 3E).

Furthermore, the average discriminability of individual divergent

cells increased with learning, indicating that, despite the stable

fraction of divergent cells out of all imaged cells, individual diver-

gent cells became more robust in encoding the odorant identity

(Figure 3F).

Difficult Discrimination Training Results in Enhanced
Discriminability by Mitral Cell Populations
Using the same classification method described earlier, we

asked whether there was a change in how well the activity of

mitral cell ensembles distinguished odorant identity during the

difficult discrimination training. The decoder performance on

day 1 was significantly lower than that on day 1 of easy discrim-

ination (p < 0.001, Wilcoxon rank-sum test), consistent with the

difference in the similarity of odorant pairs. In contrast to the

degradation of the decoder performance observed during

easy discrimination training, the performance of the decoder

improved significantly during difficult discrimination training

from 0.69 ± 0.03 on day 1 to 0.79 ± 0.02 on day 7, despite the

decrease in the number of mitral cells responding to these odor-

ants (Figure 3G). Similarly to the easy discrimination training, the

decoder relied on distributed information from large populations

of mitral cells (Figure 3H).

It has been proposed that changes in the trial-to-trial correla-

tion structure, specifically an alteration in the relationship be-

tween noise correlation and signal correlation, can affect the

discriminability of ensemble activity during perceptual learning

(Cohen and Maunsell, 2009; Jeanne et al., 2013). However,

we found no evidence of such a change mediating the observed

improvement in decoder performance. When we shuffled the tri-

als of individual mitral cells within each odorant’s trials to elim-

inate response covariance across cells (noise correlation), the

decoder performance consistently improved, indicating that

noise correlation is mildly detrimental to the decoder perfor-

mance (p < 0.001, Wilcoxon signed rank test). This effect did

not change with training (Figure 3I). Furthermore, trial-to-trial

variability of population responses, another potential contributor

to the decoder performance, did not change with training (Fig-

ure 3J). Instead, the distance between trial-averaged responses

of the two odorants within the population activity space

increased gradually (Figure 3K). This is reminiscent of a recent

study that found that distance (or ‘‘signal’’), but not noise,

increased in the primary visual cortex during visual perceptual

learning (Yan et al., 2014). Consistent with the notion that the

distance between odorant responses is the main determinant

of decoder accuracy, these two measures exhibited very tight

correlation on individual days (Figure 3L). The distance, not

the variability or correlation structures, was also the main deter-

minant of decoder accuracy in the easy discrimination task (Fig-

ures S3 and S5). Taken together, training with the difficult

discrimination task results in an increased separation of

the representations of the two similar odorants that are initially

overlapping.
Mitral Cell Ensemble Activity Correlateswith Behavioral
Choice
During the difficult discrimination task, behavioral performance

plateaued at �85% success rate after 4 days. The errors were

almost exclusively (97.4%, 530 of 544 error trials on days 4–7)

false alarms in which mice licked during no-lick trials. We asked

whether these error trials could be predicted by mitral cell

odorant responses. To address this question, we projected the

population responses of individual trials onto the axis connecting

the mean responses of odorant 1 and odorant 2 trials (‘‘discrim-

ination axis’’). Strikingly, the distributions of false alarm trials and

that of correct rejection trials (correct no-lick in no-lick trials)

were significantly different (p < 0.001, bootstrap), with the false

alarm distribution lying in between the mean responses of

odorant 1 and odorant 2 trials (Figure 3M). Accordingly, within

odorant 2 trials, there was a monotonic relationship between

the location of the population response on a given trial along

the discrimination axis and the probability of false alarms, with

more ‘‘odorant 1-like responses’’ corresponding to a higher

frequency of false alarms (r =�0.69, p < 0.001, Spearman corre-

lation, Figure 3N). These results suggest that, when mitral cells

respond to odorant 2 in an ‘‘odorant 1-like’’ manner, mice are

more likely to perceive it as odorant 1.

Population Responses in the Principal Component
Space
The results so far suggest that mitral cell odor representations

undergo distinct changes in the easy and difficult discrimination

tasks. In order to visualize the changes in the high-dimensional

mitral cell population responses, we next performed principal

component analysis. This allowed us to project odorant re-

sponses either for individual mice or for pooled responses

across all mice in a space with reduced dimensions. Consistent

with the observations with the decoder analysis, in the easy

discrimination task, the representations of the two odorants

were highly discrete and non-overlapping on day 1. After the

training, the representations became closer in the activity space,

although they were still relatively distinct (Figures 4A and 4B). In

contrast, in the difficult discrimination task, mitral cell odor rep-

resentations were initially highly overlapping on day 1, reflecting

the high similarity of the two odorants. With difficult discrimina-

tion training, however, the representations of the two odorants

became more separable and discrete by day 7 (Figures 4C

and 4D).

Changes in Mitral Cell Responses during Passive
Exposure Are Qualitatively Similar to the Task Condition
It has been argued that passive exposure to similar odorants

can enhance spontaneous discrimination (Escanilla et al.,

2008; Mandairon et al., 2006). We therefore asked whether

the changes in mitral cell responses that we observed in

behaving mice require engagement in a behavioral task. To

address this question, we imaged mitral cell responses (64 ±

4.6 mitral cells per mouse, mean ± SEM) in a separate cohort

of mice experiencing odorants passively. In these experiments,

two groups of mice were handled identically to the behavioral

experiments, including surgeries, water restriction, and pre-

training. After pre-training, they experienced the same similar
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Figure 4. Bidirectional Changes in the

Divergence of Population Representations

during the Easy and Difficult Discrimination

Tasks

(A) Mitral cell population responses from a single

mouse in the easy discrimination task visualized in

the space of the first three principal components

(PC) on day 1 (top) and day 7 (bottom). Each data

point corresponds to the population activity on a

trial.

(B) Mitral cell population responses pooled across

all animals in the easy discrimination task, plotted

for day 1 and day 7 in the first three PC axes.

Note the decrease in separation of odorant 1 and

odorant 2 trials with training.

(C and D) Same as in (A) and (B) for the difficult

discrimination task. Note the increase in separa-

tion of odorant 1 and odorant 2 trials with training.

The value next to each PC axis label is the variance

accounted for by that PC axis, and plots are

manually rotated to optimally highlight any sepa-

rability between odorants.
or dissimilar odorant pairs as used in the behavioral tasks at

similar time intervals (4 s odorant, 15 s interval, �75 trials per

odorant per day, pseudorandom delivery of the two odorants)

passively over 7 days without task engagement (n = 11 mice

for difficult odorants and 8mice for easy odorants). In these con-

ditions, we observed a similar reduction in the fraction of respon-

sive mitral cells as with the task condition (Figures 5A and 5D).

Further, the fraction of cells with divergent responses also fol-

lowed a similar trend as that in task animals, with a stable diver-

gent fraction in animals experiencing similar odorants and a

decreasing fraction in animals experiencing dissimilar odorants

(Figures 5A, 5B, 5D, and 5E). The decoder performance slightly

increased and decreased for similar and dissimilar odorants,

respectively, analogous to the case in task animals. However,

although the change in decoder accuracy became significantly

lower with passive exposure to easy odorants (Figure 5C), it

did not reach statistical significance after passive exposure to

difficult odorants (Figure 5F). These results suggest that the bidi-

rectional neural changes that we identify in this study are not
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specific to the association learning condi-

tion but instead are a result of becoming

familiar with the odorants. Task engage-

ment may either accelerate and/or exag-

gerate the enhancement or deterioration

of discriminability.

DISCUSSION

In this study, we examined the effects of

different types of olfactory experience

on mitral cell odor representations. Over

a week, mice repeatedly experienced a

similar or dissimilar odorant pair in a

discrimination task or passive exposure.

We acknowledge that it is becoming

increasingly clear that fine temporal fea-
tures of mitral cell spiking, which are not accessible with the tem-

poral resolution of our imaging approach, can carry important in-

formation about odorant identity (Bathellier et al., 2008; Blauvelt

et al., 2013; Blumhagen et al., 2011; Cury andUchida, 2010; Frie-

drich et al., 2004; Gschwend et al., 2012; Lepousez and Lledo,

2013; Li et al., 2015; Shusterman et al., 2011). It has also been

shown that the reaction time in olfactory discrimination tasks

can be as short as a couple hundred milliseconds (Abraham

et al., 2004; Resulaj and Rinberg, 2015; Uchida and Mainen,

2003), indicating that mitral cell responses within this time win-

dow must contain sufficient information for discrimination at

least in certain contexts. While there is certainly value in studying

the minimal neural responses necessary for discrimination, our

task is not a reaction time task and is not designed to address

this problem. We also believe that mitral cell responses within

the first couple hundredmilliseconds after stimulus onset are un-

likely to explain the entirety of our odor percepts, and here we

chose to probe the quality of olfactory representations during

the entire stimulus period.
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Figure 5. Mitral Cell Odor Responses during Passive Experience

(A–C) Passive experience of the same odorants used in the easy discrimination task (n = 8 mice). (A) Fraction of neurons classified as responsive (black) and

divergent (magenta) on each day. There is a significant decrease of both fractions (Pearson correlation; responsive, r = �0.38, p < 0.01; divergent, r = �0.37,

p < 0.01). (B) Fraction of divergent neurons out of responsive neurons is stable during the week-long passive exposure (Pearson correlation; r = 0.05, p = 0.69). (C)

Decoder accuracy significantly decreases (Pearson correlation; r = �0.29, p < 0.05).

(D–F) Same as (A)–(C) for passive experience of the same odorants used in the difficult discrimination task (n = 11 mice). (D) Fraction of neurons classified

as responsive decreases (Pearson correlation; r = �0.42, p < 0.001), while the divergent fraction does not change (Pearson correlation, r = 0.06, p = 0.61). (E)

Fraction of divergent neurons out of responsive neurons increases (Pearson correlation; r = 0.35, p < 0.01). (F) Decoder accuracy is stable (Pearson correlation,

r = 0.18, p = 0.11).

All values in line plots are mean ± SEM.
Regardless, our imaging preparation affords a unique oppor-

tunity to perform longitudinal recording from identified mitral

cell ensembles across days, allowing a glimpse at the dynamics

of odor representations over a week of experience paradigms.

We found that all experience paradigms resulted in a sparsening

of mitral cell odorant responses. Furthermore, discrimination

training significantly modified the discriminability of odorant

pairs by mitral cell ensemble responses: discriminability

increased with training with similar odorant pairs, mirroring the

improvements in the animal’s behavioral performance. However,

during the discrimination of dissimilar odor pairs, discriminability

surprisingly decreased while behavioral performance remained

high.

Robustness and Efficiency of Sensory Coding
Information theory articulates the importance of considering the

robustness and efficiency of information codes (Shannon, 1948).

A reliable code should be robust against many factors that

degrade the quality of the code. For example, we have found

that the activity of individual mitral cells is variable from trial

to trial, making odor representations noisy. Furthermore, we

observed that noise correlation among mitral cells has an overall

negative impact on the classification of odorant identity. A com-
mon way to combat these problems is to increase redundancy,

which enhances the robustness of the code. In fact, it has

been shown that retinal ganglion cell populations encode the

visual scene with a 10-fold redundancy (Puchalla et al., 2005).

However, increasing redundancy can come at the expense of

the efficiency, decreasing the capacity of distinct information

that a sensory system can code. Then how should a sensory sys-

tem find the right balance between robustness and efficiency?

Our results suggest that these factors are dynamically adjusted

through learning. This process is context dependent, and the

similarity of experienced odorants is an important determinant

that governs the direction of the change. When the odorants

are very similar, robustness is enhanced at the expense of

efficiency. When dissimilar odorants are experienced and the

discrimination is easy, the systemmakes the codemore efficient

by reducing the robustness, perhaps because it can afford to

do so.

A striking feature of our results is that, after easy and difficult

discrimination learning, the representations of the two odorants

approached a similar level of decorrelation. In other words, the

final difference between the representations of the two odorants

was nearly independent of how similar the odorants were. This

unexpected observation makes it tempting to speculate that
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learning balanced the robustness and efficiency of the odor rep-

resentations to an optimal level. It is important to note that there

is not a single optimal value of this balance that applies to all sys-

tems. Rather, the optimality is a function of a number of factors

including the statistics of sensory inputs and the noise levels of

the sensory code. It also depends on the downstream decoding

mechanisms. As such, it has been argued that neural circuits

should adapt based on these dynamic factors to achieve opti-

mality with learning (Tkacik et al., 2010). We acknowledge that

the stimulus set used in our study is not sufficient to test the limit

of coding capacity. Future experiments involving a larger number

of odorants will be required to better gauge the efficiency in the

odorant coding space. Regardless, our results provide empirical

evidence that learning can indeed modify the balance between

robustness and efficiency in a bidirectional manner.

The Effect of Experience on Olfactory Processing
Previous studies have described learning-related plasticity at

multiple levels within the olfactory system (Abraham et al.,

2014; Chapuis and Wilson, 2012; Doucette and Restrepo,

2008; Doucette et al., 2011; Kass et al., 2013, 2016; Li et al.,

2015; Shakhawat et al., 2014). Our study contributes to the

mounting evidence supporting the olfactory bulb as an important

locus for learning-related activity changes (Abraham et al., 2014;

Doucette and Restrepo, 2008; Doucette et al., 2011; Li et al.,

2015). It is noteworthy that one previous study described that

olfactory perceptual learning, similar to the difficult discrimina-

tion task used here, resulted in increased pattern separation in

anterior piriform cortical ensembles but not in mitral cells

(Chapuis and Wilson, 2012). One important difference from our

current study was that recordings in this study were performed

in anesthetized animals. We have previously shown that anes-

thesia blocked the expression of one form of mitral cell plasticity

(Kato et al., 2012), which may explain why their recordings under

anesthesia did not reveal the mitral cell plasticity that we report

here. A recent study reported that the degree of decorrelation

in mitral cell ensemble responses to different odorants before

learning could closely predict the difficulty of discrimination

learning, although this study did not examine the effect of

learning on mitral cell responses (Gschwend et al., 2015). Taking

these results together, we suggest that one consequence of

difficult discrimination learning is the disambiguation of similar

mitral cell odor representations, which could contribute to the

improved perceptual acuity during learning. This change at the

mitral cell level may occur in concert with additional changes in

higher brain areas. Furthermore, this enhanced pattern se-

paration is not observed during easy discrimination learning, in

which the odorants already elicit discrete mitral cell odor

representations.

Wedo not believe thatmany of the changes that we report here

are directly related to the association learning aspect of our task.

One of our main findings is the bidirectional and opposing

changes in discriminability depending on discrimination diffi-

culty, and this finding is not immediately compatible with the

notion that the changes are driven by association. Furthermore,

neural changes during the passive exposure paradigm were

qualitatively similar to the task condition, albeit slightly less pro-

nounced. Therefore it appears that task engagement accelerates
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and/or exaggerates experience-driven changes whose direc-

tionality depends on the similarity of odorants. It is important to

note that we should not confuse passive exposure with a

learning-free condition. In fact, passive experience has been

found to induce implicit perceptual learning in various sensory

modalities (Escanilla et al., 2008; Kass et al., 2016; Mandairon

et al., 2006; Godde et al., 2000; Watanabe et al., 2001). We pro-

pose that a goal of these experience-driven changes in mitral

cell responses is to optimally represent the olfactory world based

on the statistics of experienced odorant sets.

The changes in mitral cell responses could be mediated by

several mechanisms. Local inhibitory neurons within the olfac-

tory bulb, consisting of various subtypes, are likely involved in

regulating mitral cell responses in an experience-dependent

manner. We previously showed that anesthesia greatly reduces

the activity of granule cells, themost abundant inhibitory neurons

in the bulb, and blocks the expression of mitral cell sparsening

after passive experience (Kato et al., 2012). These results are

consistent with the notion that granule cell activity is responsible

for the sparsening of mitral cell odor responses. Furthermore,

another study reported that an artificial elevation of inhibitory

neuron activity in the bulb can enhance pattern separation by

mitral cell population responses and improve behavioral perfor-

mance (Gschwend et al., 2015). An interesting feature about the

olfactory bulb is that many inhibitory interneurons are continually

replaced with new neurons through adult neurogenesis. It has

been reported that recently born neurons are more plastic

(Kelsch et al., 2009; Nissant et al., 2009), and artificial activation

of these young neurons is particularly effective in enhancing

discrimination learning (Alonso et al., 2012). Additionally, the ol-

factory bulb receives heavy feedback from cortical and neuro-

modulatory areas. These feedback projections have also been

reported to shape mitral cell tuning and influence olfactory

perceptual acuity (Doucette et al., 2007; Ma and Luo, 2012;

Otazu et al., 2015; Rothermel et al., 2014). Future studies will

be needed to unravel the relative contributions of these related

mechanisms to the mitral cell plasticity induced by different

types of odor experience.
EXPERIMENTAL PROCEDURES

Subjects

All procedures were in accordance with protocols approved by the UCSD

Institutional Animal Care and Use Committee and guidelines of the National

Institute of Health. Mice (Pcdh21-Cre) were originally acquired from RIKEN

BRC and backcrossed at least four times to C57bl/6. Mice were housed in

disposable plastic cages with standard bedding in a roomwith a reversed light

cycle (12 hr/12 hr), and all experiments were performed during the dark period.

Surgeries

Adult mice (6 weeks or older, male) were anesthetized with isoflurane, and

surgeries were performed to implant a headplate and perform craniotomy as

described previously (Kato et al., 2012). Briefly, a stainless steel headplate

was glued to the skull, followed by the implantation of an optical glass window

(1 3 2 mm oval) above the right olfactory bulb and securement with dental

cement. To obtain mitral cell-specific expression of GCaMP6f, virus contain-

ing a Cre-dependent GCaMP6f-expression construct (AAV2.1 hsyn-FLEX-

GCaMP6f, UPenn Vector Core, 1:4 dilution in saline, 20 nl per site, four sites)

was injected into the olfactory bulb of Pcdh21-cre mice at the depth of

250 mm during craniotomy.



Odorant Delivery

Odorants were first diluted in mineral oil to a calculated vapor pressure of

200 ppm. A custom-built olfactometer mixed saturated odorant vapor 1:1

with filtered, humidified air for a final concentration of 100 ppm. Final air flow

rate was controlled at 1 L/min.

Behavior

Mice were water restricted starting �1 week after surgeries, and weight was

maintained at 80%–85%of initial value. The pre-training phase started 2weeks

after water restriction. The behavioral program was controlled by a real-time

system (C. Brody, personal communication). Each daily training session con-

sisted of 150 trials, and odorants were delivered pseudo-randomly with no

more than three successive trials of the same odorant. Each trial included an

odorant delivery time of 4 s. This was followed by a 2 s answer period where

the mouse had the opportunity to respond. If the odorant was the rewarded

odorant (S+) and the mouse licked the lickport at least once during the answer

period, a water reward is given (�6–7 ml). Any other action (i.e., not licking to S+

or unrewarded odorant [S�], or licking to S�) did not result in a water reward,

and the trial would then proceed to the inter-trial interval (ITI). No punishment

was delivered for error trials. Licking during the odorant period was ignored.

During the pre-training phase, mice were first trained with a single odorant

pair, citral (S+) and limonene (S�), with an ITI of 3 s. After mice performed

above 80% success rate, the ITI was incrementally extended by 2 s every

half-session until an ITI of 15 s was reached. Once the mice performed

at a success rate above 80% for the first odorant pair with an ITI of 15 s

(�7–10 days), odorants were changed to a second pair, +-carvone (S+) and

cumene (S-). Once mice performed above 80% for the second odorant pair

(�3–4 days) and mitral cells expressed GCaMP6f at levels sufficient for imag-

ing, we began the week-long imaging period, where mitral cell activity was

monitored while mice simultaneously performed a discrimination task with a

novel odorant pair or experienced the novel odorants passively. For passive

odorant experience, the trial structure, including odorant delivery time (4 s)

and ITI (15 s), was the same as during discrimination training, with the excep-

tion that nowater rewardwas given. Licking during passive exposure was rare,

decreasing from 6.3% ± 2.5% and 5.2% ± 1.5% of trials on day 1 for easy and

difficult odorants, respectively, to 1.9% ± 0.6% and 1.4% ± 0.6% of trials on

day 7. The odorants used for the imaging experiments, heptanal and ethyl

tiglate, were chosen on the basis of their structural dissimilarity.

Image Acquisition

Two-photon imaging was done with a commercial microscope (B-scope,

Thorlabs) with 925 nm excitation from a Ti-Sa laser (Spectra-physics) at a

framerate of approximately 28 Hz. Each imaging frame was made up of

512 3 512 pixels, spanning 765 3 655 mm. Imaging was performed continu-

ously during segments of about 2.4 min long, with inter-segment intervals of

7 s. Data from trials which occurred during the intervals were not analyzed.

Full-frame cross-correlation correction on imaging frames was performed

using a custom program written in MATLAB.

Data Analysis

In a small number of sessions we were not able to collect imaging data due

to error, and these sessions were excluded from analysis. These excluded

sessions were as follows: difficult odorant discrimination—day 6 (one mouse)

and day 7 (twomice); difficult odorants, passive exposure—day 3 (onemouse);

easy odorant discrimination—day 7 (two mice). Unless otherwise stated, all

values are reported as mean ± SEM.

Determining ROIs

Regions of interest (ROIs) were manually drawn around mitral cells by using a

custom MATLAB program on the average image of the first session. For each

ROI, a background ROI was also manually drawn in a nearby area that was un-

occupied by other labeled cells or neurites. For each subsequent day, each

ROI was manually moved to accommodate small shifts, and if any ROI was

not visible in any of the imaging days, that ROI was excluded. Pixels values

within each ROI were averaged to create fluorescence time series, and values

from the corresponding background ROI were subtracted. For each trial for

each mitral cell, the time series was normalized to the average fluorescence

value during the baseline period (5 s period before odorant onset) to calculate
dF/F. The total numbers of cells and animals imaged for each condition are as

follows: 731 cells and 10 mice (difficult discrimination training); 736 cells and

11mice (difficult odors, passive exposure), 467 cells and 8 mice (easy discrim-

ination training), and 479 cells and 8 mice (easy odors, passive exposure).

Classifying Responsive and Divergent Mitral Cells

Responsive and divergent mitral cells were identified in each session using trial

traces smoothed with the MATLAB ‘‘smooth’’ function with the time constant

of six frames (�0.25 s).

A mitral cell was classified as divergent if both of the following two criteria

were met. For criterion 1, dF/F is significantly different (p < 0.05) between

odorant 1 and odorant 2 trials in at least 75% of the time points within any

0.5 s window during the odorant period. p value for each time point was

calculated by Wilcoxon rank sum test between dF/F values for odorant 1

and odorant 2 trials. For criterion 2, the difference between trial-averaged

dF/F of odorant 1 and odorant 2 trials exceeds 0.225 in at least one time point

during the 0.5 s window that meets the first criterion.

A mitral cell was classified as responsive to a given odorant in a given ses-

sion if one of the following two criteria were met. For criterion 1, the cell is clas-

sified as divergent as above. For criterion 2, both of the following criteria are

met: (1) dF/F is significantly different (p < 0.05) from baseline in at least 75%

of the time points (i.e., image frames) within any 0.5 s window during the

odorant period. p value for each time point was calculated by Wilcoxon rank

sum test between dF/F at that time point from all trials of a given odorant

and dF/F of all baseline frames from all trials. (2) The difference between

trial-averaged and time-averaged baseline dF/F and trial-averaged dF/F of

a given time point exceeds 0.20 in at least one time frame during the 0.5 s

window that meets the first criterion.

Based on these classification methods, the false discovery rate calculated

by comparisons with shuffled data (Komiyama et al., 2010) was 0% for the cri-

terion 2 of responsive classification (0/2,704,800 cell-odorant-session pairs,

calculated by shuffling time points within trials) and 0.33% for divergent clas-

sification (420/1,352,400 cell-session pairs, calculated by shuffling trial labels).

Calculating d0 for Divergent Neurons

On each day, the sensitivity index, or d0 (Macmillan and Creelman, 2005), for

divergent neurons for each mouse was calculated. First, all trial traces were

smoothed with the MATLAB ‘‘smooth’’ function with the time constant of six

frames (�0.25 s). If a cell was divergent on a given day, d0 was calculated

for each time frame during the odorant period (0–4 s after odorant onset).

d0 =

�
�mean

dF

F odorant1
�mean

dF

F odorant2

�
�

pooled standard deviationodorant1 and 2

Then each divergent neuron was assigned the maximum d0 value of all

frames during the odorant period, and the average of thesemaximum d0 values
of divergent neurons for each mouse on each session was calculated and

plotted in Figures 2F and 3F.

Decoder Analysis

For each mouse, decoder analysis was performed on 100 iterations. In each

iteration, 16 mitral cells used for the decoder were randomly drawn from a

pool of all mitral cells that were classified as responsive in at least one session.

The population size of n = 16 cells was determined by the mouse with the

lowest number of responsive mitral cells.

Nearest-Centroid Decoder

For the nearest-centroid classifier (Kato et al., 2012), the mitral cell population

response in each trial was expressed as an activity vector, which was a

concatenation of the time-averaged dF/F from the first and second 2 s win-

dows during the 4 s odorant period of each mitral cell (16 neurons 3 2 values

per neuron = 32 dimensional vector). For each trial, centroids for odorant 1 and

odorant 2 trials were calculated from all trial activity vectors excluding the trial

being scored. The decoder assigned the trial in question the identity of the

odorant with the closest centroid. For each iteration, the accuracy of the

decoder was calculated as the prediction success rate of the decoder for all

trials on each day. For each mouse, the daily accuracy was calculated by

taking the average of the 100 iterations.

We next assessed the contributions of individual variables to decoder accu-

racy. For each iteration, the distance between odor centroids was assessed by

first calculating odor centroids, which are the population vectors created from
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the mean of all trial activity vectors belonging to each odorant in a session.

Then the mean square distance was calculated as the square of the Euclidean

distance between odor centroids, divided by the number of neurons in the ac-

tivity vector. For each mouse, the daily mean square distance was calculated

by averaging across 100 iterations.

The trial-to-trial variability for each odorant was assessed by calculating the

total variance on each day. For each iteration, the total variance for each

odorant on each day was calculated by summing the diagonal of the covari-

ance matrix (summing the variance across each dimension of the activity vec-

tor). Mean daily total variance for each mouse and odorant was calculated by

averaging across 100 iterations.

The contributions of interneuronal correlations were assessed by disrupting

noise correlations through the shuffling of trial responses independently for

each neuron. Decoder accuracy was recalculated using activity vectors recon-

structed from these shuffled responses for 100 iterations of shuffling. The

change in decoder accuracy after disrupting noise correlation was calculated

for each mouse in each session by subtracting the original decoder accuracy

(without shuffling) from the decoder accuracy after shuffling. Wilcoxon

signed rank test was performed, for each condition, on the dataset of concat-

enated mouse-day pairs of decoder accuracy values for before and after trial

shuffling.

To assess how distributed odorant identity information is across mitral cells,

the decoder analysis was repeated after removing subsets of 16 neurons.

Decoder accuracy was calculated after removing one additional neuron in

each iteration in the descending order of their contribution to decoder accu-

racy (i.e., the drop in decoder accuracy after removal). One hundred iterations

were performed for each mouse, where different 16-neuron populations were

resampled for each iteration. Average scores were calculated for each mouse

by averaging across iterations.

Linear Discriminant Analysis

For the linear discriminant analysis (LDA)-based classifier, the mitral cell

population response in each trial used the same trial activity vectors as in

the nearest-centroid decoder (see above). The linear classification was per-

formed using the MATLAB function classify. For each day, the classifier went

through each trial as the test set, using the other remaining trials as the training

set. The accuracy of the decoder was calculated as the prediction success

rate of the decoder for all trials on each day. For each mouse, the daily accu-

racy was calculated by taking the average score of the 100 iterations of

randomly selected subsets of 16 cells.

The contributions of interneuronal correlations for LDA were assessed in

the same way as in nearest-centroid decoder, by the shuffling of trial re-

sponses independently for each neuron. The change in decoder accuracy after

disrupting noise correlation was calculated for each mouse in each session by

subtracting the original decoder accuracy (without shuffling) from the decoder

accuracy after 100 iterations of shuffling.

Support Vector Machine

For the support vector machine (SVM)-based classifier, the mitral cell popula-

tion response in each trial used the same trial activity vectors as in the nearest-

centroid classifier (see above). The classification was performed using the

MATLAB’s svmtrain function. The classifier went through each single trial as

the test set, using the other remaining trials as the training dataset. The accu-

racy of the decoder was calculated as the prediction success rate of the

decoder for all trials on each day. For each mouse, the daily accuracy was

calculated by taking the average of the 100 iterations of randomly selected

subsets of 16 cells.

The contributions of interneuronal correlations for SVMwere assessed in the

same way as in nearest-centroid decoder, with ten iterations of shuffling.

Principal Component Analysis

For individual mice, principal component analysis was performed on a matrix

made by concatenating all trial response vectors (defined as above, using all

mitral cells that are classified as responsive in at least one session) from day

1 and day 7. For pooling across mice, a matrix of trial response vectors was

created for each mouse using the first n trials. A pooled response vector

was then created by concatenating across animals. The number of trials n,

determined by the session with the lowest number of trials for a single odorant,

was 31 for easy discrimination and 29 for difficult discrimination.
184 Neuron 92, 174–186, October 5, 2016
Calculating Correlation Coefficients

To calculate correlation coefficients for each day, a mitral cell population

response vector was constructed for each trial by concatenating the time-aver-

ageddF/F from thefirst andsecond2 swindowsduring the4 sodorant periodof

eachmitral cell. Correlation coefficient between response vectors for each pair

of trials was calculated using the MATLAB function corrcoef. Averages of trial

pairs from two different odorants and same odorants were used as the inter-

odorant and intra-odorant correlation coefficient for each mouse, respectively.
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Watanabe, T., Náñez, J.E., and Sasaki, Y. (2001). Perceptual learning without

perception. Nature 413, 844–848.
186 Neuron 92, 174–186, October 5, 2016
Yan, Y., Rasch, M.J., Chen, M., Xiang, X., Huang, M., Wu, S., and Li, W. (2014).

Perceptual training continuously refines neuronal population codes in primary

visual cortex. Nat. Neurosci. 17, 1380–1387.

Yokoi, M., Mori, K., and Nakanishi, S. (1995). Refinement of odor molecule tun-

ing by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl.

Acad. Sci. USA 92, 3371–3375.

http://refhub.elsevier.com/S0896-6273(16)30563-3/sref55
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref55
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref55
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref56
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref56
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref58
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref58
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref59
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref59
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref59
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref60
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref60
http://refhub.elsevier.com/S0896-6273(16)30563-3/sref60

	Balancing the Robustness and Efficiency of Odor Representations during Learning
	Introduction
	Results
	Easy Discrimination Training Results in More Efficient Mitral Cell Encoding
	Difficult Discrimination Training Results in More Robust Encoding of Odorant Identity
	Difficult Discrimination Training Results in Enhanced Discriminability by Mitral Cell Populations
	Mitral Cell Ensemble Activity Correlates with Behavioral Choice
	Population Responses in the Principal Component Space
	Changes in Mitral Cell Responses during Passive Exposure Are Qualitatively Similar to the Task Condition

	Discussion
	Robustness and Efficiency of Sensory Coding
	The Effect of Experience on Olfactory Processing

	Experimental Procedures
	Subjects
	Surgeries
	Odorant Delivery
	Behavior
	Image Acquisition
	Data Analysis
	Determining ROIs
	Classifying Responsive and Divergent Mitral Cells
	Calculating d′ for Divergent Neurons
	Decoder Analysis
	Nearest-Centroid Decoder
	Linear Discriminant Analysis
	Support Vector Machine

	Principal Component Analysis
	Calculating Correlation Coefficients

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


