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SUMMARY

Axon-axon interactions have been implicated
in neural circuit assembly, but the underlying
mechanisms are poorly understood. Here, we
show that in the Drosophila antennal lobe,
early-arriving axons of olfactory receptor neu-
rons (ORNs) from the antenna are required for
the proper targeting of late-arriving ORN axons
from the maxillary palp (MP). Semaphorin-1a is
required for targeting of all MP but only half of
the antennal ORN classes examined. Sema-1a
acts nonautonomously to control ORN axon-
axon interactions, in contrast to its cell-autono-
mous function in olfactory projection neurons.
Phenotypic and genetic interaction analyses im-
plicate PlexinA as the Sema-1a receptor in ORN
targeting. Sema-1a on antennal ORN axons
is required for correct targeting of MP axons
within the antennal lobe, while interactions
amongst MP axons facilitate their entry into
the antennal lobe. We propose that Sema-1a/
PlexinA-mediated repulsion provides a mecha-
nism by which early-arriving ORN axons con-
strain the target choices of late-arriving axons.

INTRODUCTION

Specific molecular recognition between pre- and postsyn-

aptic neurons is generally thought to be the primary mech-

anism by which connection specificity is established in the

nervous system. However, axon-axon interactions among

input neurons or dendrite-dendrite interactions among

target neurons could further contribute to connection

specificity. This is particularly plausible in neural circuits

in the central brain where axons from many input neurons

form highly specific connections with many target neurons
N

in a highly compact space. Indeed, axon-axon interac-

tions have been implicated in the assembly of visual and

olfactory circuits in flies and mammals (Brown et al.,

2000; Clandinin and Zipursky, 2000; Ebrahimi and Chess,

2000; Feinstein and Mombaerts, 2004; Komiyama et al.,

2004). However, neither the underlying molecular mecha-

nisms of axon-axon interactions nor the cellular and devel-

opmental context under which such interactions take

place are well understood.

The adult olfactory system of Drosophila contains �50

classes of olfactory receptor neurons (ORNs), each ex-

pressing 1–2 specific odorant receptors and projecting

their axons to one of 50 glomerular targets in the antennal

lobe (Figure 1A). In contrast to the mouse olfactory system

where odorant receptors themselves have instructive in-

formation about ORN targeting specificity (Mombaerts

et al., 1996; Wang et al., 1998; Imai et al., 2006), odorant

receptors in Drosophila do not play a role in this process

(Dobritsa et al., 2003). Although several molecules have

been shown to be required for aspects of axon targeting

of Drosophila ORNs (Ang et al., 2003; Hummel et al.,

2003; Hummel and Zipursky, 2004; Jhaveri et al., 2004;

Komiyama et al., 2004), mechanisms that instruct the tar-

get choice of individual ORN classes are largely unknown

(reviewed in Komiyama and Luo [2006]).

At the antennal lobe, ORN axons form highly specific

synaptic connections with dendrites of second-order ol-

factory projection neurons (PNs), most of which send den-

drites to a single glomerulus. Previous studies have shown

that PN dendritic targeting is specified by lineage, birth

order, and intrinsic transcriptional control (Jefferis et al.,

2001; Komiyama et al., 2003), and initial targeting occurs

prior to the arrival of pioneering ORN axons in the antennal

lobe (Jefferis et al., 2004). When ORN axons start to in-

vade the antennal lobe, a coarse map in the protoantennal

lobe has already formed by virtue of specific PN dendrite

targeting (Jefferis et al., 2004). Given this developmental

sequence, ORN axon targeting in principle could recog-

nize cues on PN dendrites or non-PN cues at the antennal

lobe, or they could self-organize through axon-axon
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Figure 1. Antennal ORN Axons Reach the Developing Antennal Lobe before MP ORN Axons

(A) Schematic of the organization of the Drosophila olfactory system (Left, frontal view; Right, sagittal view). AT, antenna; MP, maxillary palp; AL,

antennal lobe; SOG, suboesophageal ganglion; A, anterior; P, posterior; D, dorsal; V, ventral; M, medial; L, lateral. Not drawn to scale.

(B) Pioneering antennal ORN axons (arrowheads) arrive at the developing antennal lobe at 18 hr after puparium formation (APF), whereas pioneering

MP ORN axons (yellow arrows) reach the antennal lobe at 30–32 hr APF. The central (left panels) or posterior (right panels) section of the antennal lobe

is shown. Green, mCD8-GFP marking ORN axons, maximum-intensity confocal stack z-projections; blue, N-cadherin (18 hr and 24 hr panels) or

Sema-1a (30 hr and 36 hr panels) immunostaining, single confocal sections. Genotype: elav-Gal4 eyFLP; FRTG13 tubP-Gal80/FRTG13

UAS-mCD8GFP. Scale bar, 50 mm.
interactions. We provide an example and mechanism for

the self-organization strategy in this study.

Evidence for the use of axon-axon interactions in Dro-

sophila ORN axon targeting came from a previous study

of the POU transcription factor Acj6 (Komiyama et al.,

2004). Genetic mosaic analyses indicated that Acj6 func-

tion in some ORNs is required for the correct axon target-

ing of other ORNs. This observation implies the existence

of hierarchical interactions among different ORN classes

(Komiyama et al., 2004). However, it is unclear how such

interactions take place: which classes interact and what

molecules mediate these interactions. Here, we show

that early-arriving antennal ORN axons are required for

targeting fidelity of late-arriving maxillary palp (MP) ORN

axons. We further provide molecular mechanisms of this

axon-axon interaction among ORNs: Semaphorin-1a

(Sema-1a) in antennal ORNs acts as a ligand for MP

ORNs to restrict their target choice, and this signaling is

most likely mediated through its repulsive receptor Plex-

inA. Our study provides a molecular, cellular, and develop-
186 Neuron 53, 185–200, January 18, 2007 ª2007 Elsevier Inc
mental context of how axon-axon interactions are used

for regulating ORN axon targeting specificity.

RESULTS

Maxillary Palp ORN Axons Reach the Antennal

Lobe after Antennal Axons

Approximately 1200 Drosophila ORNs reside in each third

segment of the antenna, whereas �120 ORNs reside in

each MP. Individual ORNs from most antenna and MP

classes target their axons to a single glomerulus in the

ipsi- as well as the contralateral antennal lobe (Stocker,

1994; Figure 1A). It has previously been shown that pio-

neering ORN axons from the antenna arrive at the periph-

ery of the developing antennal lobe around 18 hr after

puparium formation (18 hr APF) (Jhaveri et al., 2000; Jeffe-

ris et al., 2004). To determine when MP axons reach the

developing antennal lobe, we selectively visualized ORN

axons using eyFLP MARCM in combination with panneural
.



Neuron

Axon-Axon Interactions Restrict Target Choices
Figure 2. Antennal ORN Axons Are

Required for Targeting Fidelity of MP

ORN Axons

(A) Occasional loss of antenna(e) or maxillary

palp(s) as a result of eyFLP-induced smooth-

ened clones. (A1) A control adult head has two

antennae (AT) and two maxillary palps (MP).

(A2–A4) Examples of adult heads of eyFLP-

induced smo3 MARCM flies that are missing

one or both antenna(e) or MP(s), as indicated.

Antennae and MPs are indicated by arrow-

heads and arrows, respectively. Open arrow-

heads and open arrows mark missing third

antennal segment(s) and MP(s), respectively.

(B) In eyFLP-induced smo3 MARCM flies, Or42a

axons from the MP target correctly to the VM7

glomeruli in flies containing one (data not

shown) or both antennae (filled arrowhead in

[B1]). In flies lacking both antennae (0 AT), Or42a

axons cluster extensively in ventral-medial glo-

meruli (arrow in [B2]) or ectopically project to

dorsal-medial antennal lobe (arrows in [B3]).

(C) In eyFLP-induced smo3 MARCM flies,

Or23a ORN axons from the antenna project to

DA3 (arrowhead) and DC3 (arrow) correctly in

flies having both (C1) or no (C2) MP.

(D) Quantification of axon-targeting pheno-

types of one MP and three antennal ORN clas-

ses under conditions when different sensory or-

gans are missing. Or23a- and Or42a-Gal4 label

axons that target to more than one glomeruli,

possibly a consequence of incomplete cis-

regulatory sequences used in these Or-Gal4

transgenes (see Table 1). Or42a-V represents

antennal ORNs that ectopically expressed

Or42a-Gal4 resulting in the labeling of ORNs

targeting to the glomerulus V (open arrowhead

in [B1]).

(E) All smo�/�ORNs are labeled in green by a panneural elav-Gal4 driver in conjunction with eyFLP MARCM. In the antennal lobe of a fly with one intact

MP (E1), ORN axons innervate normal MP axon target glomeruli VC2, VC1, 1 (arrowheads), as well as VA4, VA7l, and VM7 (data not shown; in different

confocal sections). In the antennal lobe of a fly with no MP (E2), these MP target glomeruli are no longer innervated by any green axons, indicating that

antennal ORN axons do not invade these MP axon-free glomeruli (yellow dashed circles and data not shown). n = 12 and 10 for 1 MP and 0 MP samples,

respectively.

Scale bar, 50 mm (B and C). Genotype: (A1) UAS-mCD8GFP eyFLP FRT19A/+; tubP-Gal80 FRT40A/CyO. (A2–A4) UAS-mCD8GFP eyFLP FRT19A/+;

smo3 FRT40A/tubP-Gal80 FRT40A. (B–D): UAS-mCD8GFP eyFLP FRT19A/+; smo3 FRT40A/tubP-Gal80 FRT40A; Or-Gal4/+. (E) UAS-mCD8GFP

eyFLP FRT19A/elav-Gal4 hsFLP UAS-mCD8GFP; smo3 FRT40A/tubP-Gal80 FRT40A.
elav-Gal4 (Jefferis et al., 2004) every 2 hr from 18 to 36 hr

APF (Figure 1B; data not shown).

After leaving the proboscis and entering the brain, MP

axons travel dorsally through the suboesophageal gan-

glion (SOG) neuropil and enter the antennal lobe from a

ventral posterior position. Thus, MP ORN axons can be un-

equivocally distinguished from the antennal ORN axons,

which enter the antennal lobe from a lateral and anterior

position (Figure 1A; Figure 1B, yellow arrowheads and ar-

rows, respectively, for antennal and MP ORN axons). We

found that the first MP axons reach the developing anten-

nal lobe between 30 and 32 hr APF (Figure 1B3). By 36 hr

APF, pioneering MP axons enter the antennal lobe and

cross to the contralateral side (Figure 1B4). Prior to MP

ORN axon arrival at 30–32 hr APF, axons from antennal

ORNs have surrounded the entire periphery (Figures 1B2

and 1B3; data not shown) and have begun to penetrate
N

into the antennal lobe (Hummel and Zipursky, 2004; Jeffe-

ris et al., 2004). This temporal difference in the arrival of

these two groups of ORN axons led us to hypothesize

that antennal axons direct MP axons to their proper target

area.

Antennal ORN Axons Are Required for Targeting

Fidelity of MP Axons

To test whether antennal ORN axons are required for cor-

rect targeting of MP axons, we made use of a serendipi-

tous observation that generation of smoothened (smo)

null clones using eyFLP results in the occasional loss of

one or both third antennal segment(s) or maxillary palp(s),

thus eliminating the population of ORNs within (Figure 2A).

This is presumably caused by the fact that Hedgehog sig-

naling is essential for early eye-antennal disc proliferation

(Cho et al., 2000). In animals with two intact antennae,
euron 53, 185–200, January 18, 2007 ª2007 Elsevier Inc. 187
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Figure 3. Expression of Sema-1a and PlexinA in Antennal and MP ORN Axons

(A) Sema-1a is expressed in ORN axons from the antenna (arrowheads; central section of the antennal lobe) and MP (arrows; posterior section of the

antennal lobe) at 24 hr and 36 hr APF, respectively. At 24 hr APF, Sema-1a staining is much stronger in the ORN layer than PN dendrites in the center of

the antennal lobe. Green, mCD8-GFP as a marker for ORN axons; white, Sema-1a.

(B) UAS-sema-1a RNAi driven by pebbled-Gal4 results in a marked reduction of the Sema-1a protein in the ORN axon layer of the anterior antennal

lobe (yellow outline) and antennal axon bundles (arrowheads). Twenty-five hours APF at 29�C (roughly equivalent to 34 hr APF at 25�C). Green, mCD8-

GFP as a marker for ORN axons; white, Sema-1a.

(C) UAS-sema-1a RNAi driven by pebbled-Gal4 results in a significant reduction of the Sema-1a protein in MP axons in the posterior antennal lobe

(yellow outline). Twenty-five hours APF at 29�C. Note that Sema-1a expression domain is wider than the MP bundle, suggesting that other neighboring

neuronal processes that are pebbled-Gal4 negative also express Sema-1a. Green, mCD8-GFP marking ORN axons; white, Sema-1a.

(D) PlexinA is expressed in ORN axons from the antenna (arrowheads, central antennal lobe section) and MP (arrows, posterior antennal lobe section)

at 24 hr and 36 hr APF, respectively. Green, mCD8-GFP as a marker for ORN axons; white, PlexinA.

(E) UAS-plexinA RNAi driven by pebbled-Gal4 results in a marked reduction of the PlexinA protein in the ORN axon layer of the anterior antennal

lobe (yellow outline) and antennal axon bundles (arrowheads). Twenty-five hours APF at 29�C. Green, mCD8-GFP as a marker for ORN axons; white,

PlexinA.

(F) UAS-plexinA RNAi driven by pebbled-Gal4 results in a marked reduction of the PlexinA protein in MP axons in the posterior antennal lobe (yellow

outline). Twenty-five hours APF at 29�C. Green, mCD8-GFP marking ORN axons; white, PlexinA.
188 Neuron 53, 185–200, January 18, 2007 ª2007 Elsevier Inc.
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axons from smo�/�MP ORNs expressing Or42a correctly

target to their normal glomerulus (Figure 2B1), indicating

that smo itself does not affect targeting of this MP ORN

class. By contrast, when both antennae failed to form in

9 of �8000 flies screened (e.g., Figure 2A3, open arrow-

heads), Or42a expressing axons mistarget in seven of

nine cases (Figures 2B2 and 2B3; quantified in Figure 2D).

The axons often mistarget to areas normally occupied by

antennal ORN axons. The strong correlation between the

loss of both antennae (including all antennal ORN axons)

and MP axon targeting defects indicates that antennal

ORN axons contribute to the fidelity of MP axon targeting.

Conversely, loss of both MPs did not affect axon targeting

of three antennal ORN classes examined (Figures 2C1 and

2C2 and Figure 2D), suggesting that antennal ORN axons

do not require MP axons for correct targeting.

In principle, antennal ORN axons could influence MP

axon targeting indirectly through their postsynaptic targets

such as the PNs. For example, lack of ORN innervation

could disrupt PN dendritic organization, in turn causing

other ORNs to mistarget. Alternatively, PN dendrites lack-

ing their antennal presynaptic partners could attract the

available MP ORN axons, causing them to mistarget. Sev-

eral lines of evidence argue against these possibilities.

First, PN dendrites target to their appropriate areas and

create a protomap independent of ORN axons (Jefferis

et al., 2004) and can refine even when ORN axon invasion

into the antennal lobe is severely disrupted (Zhu and Luo,

2004). Second, we have recently shown that at least in

the adult, wiring specificity of the olfactory system is ex-

tremely stable. ORN axons do not invade neighboring

glomeruli devoid of ORN axons as a result of specific

ORN ablation (Berdnik et al., 2006). Third, in the cases

when both MPs are missing (e.g., Figure 2A4, open arrows),

antennal ORN axons do not invade the unoccupied MP

glomerular targets (Figure 2E). Thus, the most likely inter-

pretation of MP axon mistargeting in the absence of anten-

nal axons is that antennal axons normally guide the target-

ing of MP axons directly.

To further elucidate the mechanisms by which ORNs in-

teract with each other, we searched for molecules that

govern ORN axon targeting. Two sets of experiments led

to the identification of Sema-1a and PlexinA, a ligand and

receptor pair known to regulate embryonic motor axon

guidance (Kolodkin et al., 1993; Winberg et al., 1998; Yu

et al., 1998), as candidate molecules required for ORN

axon targeting. First, in a directed genetic approach, we

found that Sema-1a plays a critical role in ORN axon tar-

geting (see below). Second, in an unbiased transgenic

RNAi screen (A.C. and B.J.D., unpublished data), we found
N

that an ORN-specific knockdown of Sema-1a and PlexinA

resulted in ORN targeting defects. In the rest of this study,

we explore the mechanisms by which Sema-1a-PlexinA

signaling between ORN axons controls their targeting.

Expression of Sema-1a and PlexinA in ORN Axons

We first characterized the expression of Sema-1a and

PlexinA in ORN axons. We used an antibody specific to

Sema-1a (Yu et al., 1998) to stain the developing antennal

lobe. The antibody specificity was further confirmed by

a drastic reduction of Sema-1a staining in pupal brains

when a UAS-RNAi transgene against sema-1a was driven

by a panneural Gal4 line (see Figure S1A in the Supple-

mental Data available with this article online); this experi-

ment also indicates that the majority of Sema-1a in the pu-

pal brain is made by neurons. We found that Sema-1a is

highly expressed in antennal ORN axons in the developing

antennal lobe from 18–36 hr APF (Figure 3A, arrowheads;

data not shown). In a separate study, we showed that

Sema-1a is also expressed in PN dendrites prior to ORN

axon arrival (Komiyama et al., 2007). However, after

ORN axon arrival, the Sema-1a protein level is higher in

the ORN axon layer at the periphery of the antennal lobe

compared to the central antennal lobe where PN dendrites

reside (Figure 3A, left). To confirm Sema-1a expression in

ORN axons, we knocked down Sema-1a in ORNs by RNAi

using pebbled-Gal4, which is expressed in all developing

ORNs but not in cells in the brain near the antennal

lobe (Figure S2). This resulted in a marked reduction of

Sema-1a staining specifically in the ORN axon layer at

the periphery of the antennal lobe (Figure 3B). At 36 hr

APF, Sema-1a is also expressed in a bundle of axons

between the SOG and ventral antennal lobe; this axon

bundle includes MP axons when they approach the devel-

oping antennal lobe (Figure 3A, right; Figure 3C). pebbled-

Gal4-driven UAS-sema-1a RNAi significantly reduced the

Sema-1a immunofluorescence intensity in the MP ORN

axon bundle (Figure 3C; quantified in Figure 3G), confirm-

ing Sema-1a expression in these axons.

To examine the expression pattern of PlexinA in the

olfactory system, we raised a polyclonal antibody against

PlexinA (see Experimental Procedures). Specificity of this

affinity-purified antibody was verified by a marked reduc-

tion of PlexinA level in pupal brains when a UAS-plexinA

RNAi transgene was driven by a panneural Gal4 (Fig-

ure S1B); this also indicates that the majority of PlexinA

in the pupal brain is made by neurons. Using this antibody,

we found that PlexinA is highly expressed in the devel-

oping antennal lobe including both antennal and MP

ORNs (Figure 3D, arrowheads and arrows, respectively).
(G) Quantification of pebbled-Gal4 Sema-1a and PlexinA RNAi knockdown in MP ORN axons at 25 hr APF (29�C). From single confocal sections cho-

sen from the green channel, mean fluorescence intensity of Sema-1a (left) and PlexinA (right) staining within MP axon bundles was quantified, nor-

malized to the fluorescence intensity of a pebbled-negative region, and plotted. Error bar, SEM. For Sema-1a staining, n = 8 for both samples; for

PlexinA staining, n = 10 and 7 for control and RNAi, respectively. p < 0.01 (t test) for both comparisons.

Scale bar, 50 mm (A, B, D, and E); 5 mm (C and F). Genotype: (A and D) pebbled-Gal4; UAS-mCD8GFP. (B and C) WT: pebbled-Gal4 UAS-mCD8GFP.

RNAi: pebbled-Gal4 UAS-mCD8GFP/UAS-sema-1a RNAi. (E and F) WT: pebbled-Gal4 UAS-mCD8GFP. RNAi: pebbled-Gal4 UAS-mCD8GFP; UAS-

plexinA RNAi/+.
euron 53, 185–200, January 18, 2007 ª2007 Elsevier Inc. 189
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Selective knockdown of PlexinA by pebbled-Gal4 in ORNs

results in a drastic reduction of PlexinA level in the ORN

axon layer at the periphery of the antennal lobe (Figure 3E),

confirming the contribution of antennal ORN axons to

PlexinA staining in the antennal lobe. At 36 hr APF, PlexinA

expression is also found in the axon bundle between the

SOG and ventral antennal lobe that includes the MP

axon bundle. pebbled-Gal4 driven plexinA RNAi expres-

sion significantly reduced the PlexinA immunofluores-

cence intensity in the MP bundle (Figure 3F; quantified in

Figure 3G), confirming that PlexinA is expressed on MP

axons as they approach the developing antennal lobe.

In summary, these expression studies indicate that both

Sema-1a and PlexinA are expressed in both antennal and

MP axons at times when these axons reach the antennal

lobe and begin to select their targets.

Sema-1a Is Required in ORNs for Axon Targeting

of All MP but Only Half of Antennal ORN Classes

To test the function of Sema-1a in ORN axon targeting, we

analyzed targeting of 17 different ORN classes using Or-

Gal4 lines to label specific classes of ORN axons. These

classes encompass about one third of all ORN classes

in the adult Drosophila, including all sensillar types (Table

1). In the first two sets of experiments, we removed Sema-

1a using the sema-1aP1 null allele (Yu et al., 1998) from

about half or almost all ORNs using eyFLP MARCM or

eyFLP/cell lethal strategies, respectively (Newsome

et al., 2000; Hummel et al., 2003; Hummel and Zipursky,

2004; Komiyama et al., 2004; Zhu and Luo, 2004; Figures

4A1 and 4A2). In the MARCM strategy, only sema-1a�/�

axons of a particular class are visualized by the Or-Gal4.

In the eyFLP/cell lethal strategy, all ORN axons of one

class are visualized, of which the vast majority are sema-

1a�/�. In both cases, cells in the central brain are hetero-

zygous as eyFLP restricts recombination in the olfactory

system to the peripheral organs (Hummel et al., 2003;

Hummel and Zipursky, 2004; Komiyama et al., 2004; Zhu

and Luo, 2004).

All five MP ORN classes examined exhibited severe

axon-targeting defects (Figures 4B–4D and S3A). Often

MP ORN axons fail to enter the antennal lobe and form

extra-antennal lobe terminations. These de novo termina-

tions are enriched for the presynaptic marker nc82 at the

small space between the SOG and the ventral part of the

antennal lobe (Figures 4B–4D, arrows; quantified in Table

1) or occasionally within the SOG (data not shown). MP

axons that enter the antennal lobe mistarget to inappropri-

ate areas and form ectopic terminations (Figures 4B–4D,

arrowheads; quantified in Table 1; also see Figure 5B), oc-

casionally not invading their correct glomeruli at all. These

phenotypes are caused by errors in axon target selection,

as labeling of clones using HA-synaptotagmin in addition

to mCD8-GFP revealed that ectopic terminations are

highly enriched for this presynaptic marker (Figure S4).

These phenotypes are specific to the loss of Sema-1a,

as a second, independent allele (sema-1aP2) exhibited

similar phenotypes (data not shown).
190 Neuron 53, 185–200, January 18, 2007 ª2007 Elsevier Inc.
Of the 12 classes of antennal ORNs examined, five are

not affected even with the eyFLP/cell lethal strategy where

the vast majority of ORNs are sema-1a�/� (Figures 4E and

S3B; Table 1). This indicates that Sema-1a in ORNs is not

required for axon targeting of these ORN classes. Among

the remaining seven classes, all except Or67b and Or47b

ORNs exhibited mild but highly penetrant targeting de-

fects: axons always innervate their correct glomeruli but

often spread slightly beyond their correct glomeruli (Fig-

ures 4H and 4I and Figure S3C; Table 1). Or67b and

Or47b ORNs also always innervate their correct glomeruli

but occasionally mistarget to more distant regions of the

antennal lobe as well (Figures 4F and 4G, arrowhead; Ta-

ble 1). Antennal axons never form ectopic terminations

outside the antennal lobes.

The Drosophila antenna contains several morphologi-

cally different sensillar classes (Stocker, 1994), which

map to different parts of the antennal lobe (Couto et al.,

2005; Fishilevich and Vosshall, 2005) and potentially serve

different functions (de Bruyne et al., 1999, 2001; Hallem

and Carlson, 2006). Interestingly, all unaffected ORN clas-

ses belong to the antennal basiconic sensillar group,

whereas most mildly affected classes belong to the tri-

choid sensillar group (Table 1). The only coeloconic ORN

class whose OR expression has been characterized

(Or35a) was also mildly affected. The biological signifi-

cance of this correlation is currently unclear. In summary,

Sema-1a in ORNs is required differentially for the targeting

of different classes. Because of their severe phenotypes,

we focus our subsequent analyses primarily on the MP

classes.

Sema-1a Is Required Non-Cell-Autonomously

for MP Axon Targeting

Although Semaphorins are known as axon guidance li-

gands (Dickson, 2002), we have shown recently that

Sema-1a acts as a receptor in PNs for their dendritic

and axonal targeting (Komiyama et al., 2007). Sema-1a

also acts as a receptor for mushroom body neurons (Ko-

miyama et al., 2007) and photoreceptor axons (Cafferty

et al., 2006). To distinguish whether Sema-1a acts cell au-

tonomously as a receptor or non-cell-autonomously as a

ligand for ORN axon targeting, we performed two addi-

tional sets of mosaic experiments. In the first set, we

generated small clones using hsFLP-based MARCM and

visualized sema-1a�/� axons (Figure 4A5). We found that

sema-1a�/� ORN axons targeted normally (Figures 4B5–

4D5 compared to Figures 4B4–4D4; Figure S3A; Table 1),

indicating that Sema-1a does not act cell autonomously.

These results also confirmed that sema-1a heterozygosity

does not affect ORN axon targeting. Nonautonomy was

further supported by eyFLP reverse MARCM experiments

(Figure 4A3), in which labeled sema-1a+/+ ORN axons

exhibited targeting defects similar to sema-1a�/� ORN

axons when both are in an environment in which half of

the ORNs are sema-1a�/� (Figures 4B3–4D3 compared

to Figures 4B1–4D1; Table 1). The non-cell-autonomous

requirement of Sema-1a in ORNs strongly suggests that
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Table 1. Quantification of Mistargeting Frequency for 17 ORN Classes in Various Mosaic Manipulations

ORN Class

Olfactory

Organ

Glomerular

target(s)a

eyFLP

MARCM

WT

eyFLP

MARCM

sema-1a�/�

eyFLP/Cell

Lethal

sema-1a�/�

eyFLP

Reverse

MARCM

hsFLP

MARCM

WT

hsFLP

MARCM

sema-1a�/�

Intra-AL Ectopic Terminationb

Or85e MP VC1 0% (20) 31% (13) 80% (15) 53% (17) 0% (34) 0% (39)

Or46a MP VA7l/VA7m/VA5 0% (29) 91% (11) 43% (7) 46% (26) 0% (16) 0% (14)

Or42a MP VM7(V,VL2P) 0% (29) 56% (16) 38% (13) 53% (17) 0% (14) 0% (15)

Or59c MP 1(VM7,VC2) 0% (13) 13% (23) 67% (12) 29% (14) 0% (22) 0% (22)

Or71a MP VC2 0% (23) 62% (13) 100% (7) 59% (27) 0% (8) 0% (17)

Or10a AT-basiconic DL1 0% (24) 0% (7) 0% (7) n.d. n.d. n.d.

Or22a AT-basiconic DM2 0% (13) 0% (16) 0% (24) n.d. n.d. n.d.

Or47a AT-basiconic DM3 0% (8) 0% (20) 0% (20) n.d. n.d. n.d.

Or92a AT-basiconic VA2 0% (26) 0% (27) 0% (20) n.d. n.d. n.d.

Gr21a AT-basiconic V 0% (7) 0% (21) 0% (13) 0% (47) 0% (28) 0% (48)

Or67b AT-basiconic VA3 0% (23) 11% (28) 41% (22) 5% (20) 0% (13) 0% (17)

Or43a AT-trichoid DA4l 0% (16) n.d. 100% (20) n.d. n.d. n.d.

Or83c AT-trichoid VA6,DA4m,DC3 0% (7) n.d. 100% (15) n.d. n.d. n.d.

Or88a AT-trichoid VA1d 0% (5) n.d. 66% (34) n.d. n.d. n.d.

Or23a AT-trichoid DC3,DA3 0% (26) n.d. 100% (32) n.d. n.d. n.d.

Or47b AT-trichoid VA1lm 0% (36) n.d. 25% (12) n.d. n.d. n.d.

Or35a AT-coeloconic VC3 0% (15) n.d. 100% (25) n.d. n.d. n.d.

Extra-AL Termination

Or85e MP VC1 0% (46) 4% (25) 62% (26) 12% (34) 0% (20) 0% (78)

Or46a MP VA7l/VA7m/VA5 0% (39) 13% (16) 65% (17) 9% (33) 0% (19) 0% (14)

Or42a MP VM7(V,VL2P) 0% (48) 13% (31) 65% (34) 3% (33) 0% (28) 0% (30)

Or59c MP 1(VM7,VC2) 0% (20) 20% (45) 50% (28) 12% (25) 0% (44) 0% (54)

Or71a MP VC2 0% (32) 29% (17) 50% (18) 4% (45) 0% (16) 0% (34)

All antennal ORN classes 0% 0% 0% 0% 0% 0%

Data are represented as phenotypic penetrance in percentage followed by the number of samples examined (n, in parentheses).
See text for description of phenotypic severity. For intra-AL ectopic termination, n is the number of the brains examined; for extra-

AL terminations, n is the number of MP axon bundles (2/brain) examined. n.d., not determined.
a Some Or-Gal4s label more than one glomeruli, possibly a consequence of incomplete cis-regulatory sequences used in Or-Gal4

transgenes.
b For MP ORN classes, the percentage of Intra-AL Ectopic Termination is an under-estimate since mutant MP axons often form

extra-AL terminations and do not enter the AL.
Sema-1a acts as a ligand to direct ORN axon-axon inter-

actions.

PlexinA in ORNs Is Required for Their Axon Targeting

PlexinA is a well-characterized repulsive receptor for

Sema-1a in Drosophila embryonic motor axon guidance

(Winberg et al., 1998; Terman et al., 2002). To test the re-

quirement of PlexinA in ORN axon targeting, we examined

individual classes of ORN axons when the PlexinA protein

level is knocked down using pebbled-Gal4-driven plexinA

RNAi expression. Qualitatively, all four MP classes exam-
Ne
ined display the two characteristic targeting defects of

sema-1a mutants: occasional extralobe terminations ven-

tral to the antennal lobe (arrows in Figure 5A; Figure S5A)

and frequent intra-antennal lobe ectopic terminations (ar-

rowheads in Figure 5A; Figure S5A). We further compared

the phenotypes of plexinA RNAi and sema-1a mutants by

defining six regions of frequent ectopic termination inside

the antennal lobe (Figure 5B, top). The distributions of mis-

targeting among these six regions are similar for each

ORN class under both conditions (Figure 5B, bottom).

These results support the idea that Sema-1a and PlexinA
uron 53, 185–200, January 18, 2007 ª2007 Elsevier Inc. 191



Neuron

Axon-Axon Interactions Restrict Target Choices
Figure 4. Mosaic Analysis of sema-1a in ORN Axon Targeting
(A) A schematic summarizing various mosaic manipulations in the third antennal segment (AT) or maxillary palp (MP). In all conditions, the central brain

is heterozygous or wild-type. Circles represent cell bodies of a specific ORN class in the antenna or MP. Green circles indicate labeled ORNs. Dashed

regions represent clone borders in control. Pink regions are sema-1a�/� clones.

(B–D) Axon targeting of three MP classes as indicated. Arrowheads and arrows indicate respectively intralobe ectopic termination and extralobe

terminations.

(E and F) Axon targeting of two antennal basiconic ORN classes as indicated. An example of the 4/5 unaffected basiconic classes, Gr21a targets

correctly with sema-1a mosaic loss of function. Or67b is the only basiconic class affected by sema-1a mosaic loss of function, forming ectopic

innervations inside the antennal lobe (arrowheads).

(G–I) Axon targeting of two antennal trichoid and one coeloconic ORN classes as indicated. For all trichoid and coeloconic ORNs, axon mistargeting

is shown when the majority of ORNs are mutant for sema-1a by the eyFLP/cell lethal strategy. Under other mosaic manipulations, phenotypes are

too subtle to score unambiguously. sema-1a�/� Or47b ORNs (trichoid) form ectopic innervations (arrowhead). sema-1a�/� Or43a ORNs (trichoid)

are mildly affected, forming less compact glomerular structures (arrowheads). sema-1a�/� Or35a ORNs (coeloconic) similarly are mildly affected

(arrowheads). The wild-type Or35a glomerulus is outlined in yellow.
192 Neuron 53, 185–200, January 18, 2007 ª2007 Elsevier Inc.
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Figure 5. PlexinA as the Sema-1a Receptor in MP Axon Targeting

(A) PlexinA knockdown in ORNs by RNAi results in intra- and extralobe targeting defects similar to sema-1a loss-of-function mutants for the three MP

ORN classes indicated (see also Figure S5). For WT, only the right antennal lobe is shown at a higher magnification. Arrowheads indicate intralobe

ectopic terminations; arrows indicate extralobe terminations. Green, mCD8-GFP marking ORN axons of a given class; magenta, synaptic marker

nc82. Scale bar, 50 mm.

(B) Comparison of MP ORN axon mistargeting regions in sema-1a mutant (eyFLP/cell lethal), plexinA RNAi, and flies devoid of antennal axons as a

result of loss of both antennae (0 AT, Figure 2). Data are represented as the percent brains with mistargeting to given regions of the antennal lobe of

the total number of brains examined. Frequently mistargeted regions are defined as follows: A: DM5, DM6, DM3; B: VA1lm, VA6, VA7l, VM5; C: VA2,

VM2, VM3; D: VC3l, VM4, VA4; E: deep commissural below DM4; F: DL2d, VL2p.

(C) Genetic interaction of sema-1a and plexinA. Extralobe termination is shown in gray and intralobe ectopic termination is shown in black. Percent

extralobe termination = number of brains with extralobe termination/total number of brains examined 3 100. n = 62, 71, 93, respectively, for the three

genotypes. Percent intralobe ectopic termination = number of brains with intralobe ectopic termination/total number of brains examined 3 100.

n = 67, 39, 51, respectively, for the three genotypes. For both intra- and extralobe genetic interactions, data are combined from two separate exper-

iments. Experiments were performed at 25�C for extralobe terminations and 18�C for intralobe ectopic terminations.

Genotype: (A) WT: (pebbled-Gal4); Or-mCD8-GFP. RNAi: pebbled-Gal4/+; Or-mCD8-GFP/+; UAS-plexA RNAi/+. (C) Extralobe termination: sema-

1aP1/+; (UAS-plexA RNAi, TM6b)/+. pebbled-Gal4, UAS-mCD8GFP; CyO/+; UAS-plexA RNAi/+. pebbled-Gal4, UAS-mCD8GFP; sema-1aP1/+;

UAS-plexA RNAi/+. Intralobe ectopic termination: sema-1aP1/+; Or46a-mCD8-GFP/(Tm6B/UAS-plexA RNAi). pebbled-Gal4/+; CyO/+; Or46a-

mCD8GFP/UAS-plexA RNAi. pebbled-Gal4/+; sema-1aP1/+; Or46a-mCD8GFP/UAS-plexA RNAi.
act in the same pathway. Notably, the defined six regions

are also frequently mistargeted by MP ORNs in the ab-

sence of antennal ORNs (Figures 2B2 and 2B3; quantified
N

in Figure 5B), consistent with the notion that Sema-1a/

PlexinA signaling might be a major component of anten-

nal-MP axon-axon interactions.
Green, mCD8-GFP marking ORN axons of a given class; magenta, synaptic marker nc82. Scale bar, 50 mm. Genotype: (A0) eyFLP UAS-mCD8GFP;

FRT40a/tubP-G80 FRT40a; Or-Gal4/+. (A1) eyFLP UAS-mCD8GFP; sema-1aP1 FRT40a/tubP-G80 FRT40a; Or-Gal4/+. (A2) eyFLP UAS-mCD8GFP;

sema-1aP1 FRT40a/cycE FRT40a; Or-Gal4/+. (A3) eyFLP UAS-mCD8GFP; tubP-G80 sema-1aP1 FRT40a/FRT40a; Or-Gal4/+. (A4) hsFLP UAS-

mCD8GFP; FRT40a/ tubP-G80 FRT40a; Or-Gal4/+. (A5) hsFLP UAS-mCD8GFP; sema-1aP1 FRT40a/tubP-G80 FRT40a; Or-Gal4/+.
euron 53, 185–200, January 18, 2007 ª2007 Elsevier Inc. 193
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Basiconic classes of ORNs from the antenna, which do

not require Sema-1a for axon targeting, displayed target-

ing defects in plexinA RNAi experiments (Figure S5, arrow-

heads). This is consistent with our finding that antennal

axons also express PlexinA (Figures 3D and 3E). In addi-

tion, PlexinA knockdown in some cases caused more

frequent mistargeting of MP axons than Sema-1a loss-

of-function (Figure 5B, bottom). Thus, in addition to being

a receptor for ORN-derived Sema-1a, PlexinA may be a

receptor for non-ORN-derived Sema-1a or may have

additional ligands in the olfactory system such as other

Semaphorins (Winberg et al., 1998; Ayoob et al., 2006).

Due to the fourth chromosome location of the plexinA

gene, we cannot perform conventional mosaic analysis.

In addition, the lack of MP-specific Gal4 line during early

pupal development prevented us from directly confirming

PlexinA’s requirement in MP axons. Therefore, we tested

the genetic interactions between Sema-1a and PlexinA

to provide additional support for PlexinA’s function as

the receptor for Sema-1a in MP ORN axon targeting.

sema-1a and plexinA Exhibit Strong Genetic

Interactions in MP Axon Targeting

Ligands and receptors in Drosophila often exhibit dosage-

sensitive genetic interactions (Artavanis-Tsakonas et al.,

1995; Winberg et al., 1998; Kidd et al., 1999). We tested

for potential genetic interactions between sema-1a and

plexinA using both extralobe terminations and intralobe

ectopic terminations of MP axons as quantitative assays.

We found that reduction of the Sema-1a level by half

(sema-1a+/�) did not result in any phenotypes. Reduction

of the PlexinA level specifically in ORNs using pebbled-

Gal4, UAS-plexinA RNAi resulted in phenotypes of low

frequency at a low temperature. However, combination

of these genetic manipulations resulted in a marked

increase in frequency of both phenotypes (Figure 5C). Al-

though genetic interaction studies by themselves do not

prove that two genes work in the same pathway, they nev-

ertheless provide additional support for a ligand-receptor

relationship between Sema-1a and PlexinA in the context

of MP axon targeting.

Two Distinct Mechanisms of Sema-1a-Mediated

Axon-Axon Interactions

So far we have presented evidence that Sema-1a-PlexinA

signaling mediates axon-axon interactions essential for

ORN axon targeting but have not yet resolved the cellular

basis for these interactions. Specifically, the Sema-1a sig-

nal required for MP axon targeting could originate from

other MP axons, antennal axons, or both, on the ipsi- or

contralateral side. To distinguish between these possibil-

ities, we needed a means to selectively eliminate Sema-1a

function from either the antenna or the maxillary palp and

to distinguish between ipsi- and contralateral MP axons.

No genetic elements have yet been reported that would

allow us to drive mitotic recombination or transgene ex-

pression selectively in early antenna or maxillary palp.

However, in the course of the eyFLP sema-1a MARCM ex-
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periments, we occasionally observed individual flies that

do not have any eyFLP MARCM clones in one or both

maxillary palps, whereas every antenna always has abun-

dant clones of various sizes. This could be because of the

smaller number of cells in the maxillary palp and/or the

more transient expression of eyeless in the maxillary

palp (Dominguez and Casares, 2005). Regardless of the

cause, these flies provided a strategy to dissect the con-

tributions of Sema-1a on antennal and maxillary palp

ORN axons to MP axon targeting.

In our experimental design (Figure 6A), we labeled sema-

1a�/� eyFLP MARCM clones with UAS-myr-mRFP (avail-

able through the Bloomington Stock Center after contribu-

tion from H. Chang) and visualized axon targeting from a

single class of MP ORNs with a direct Or46a promoter-

driven mCD8-GFP (Couto et al., 2005). We separately col-

lected flies that have sema-1a�/� eyFLP MARCM clones in

2 MPs (Figure 6A1), 0 MP (Figure 6A2), or 1 MP (Figures 6A3

and 6A4) based on RFP fluorescence in the maxillary palp

cell bodies. For flies with 1 MP, we further separated them

into two groups. In one group, we unilaterally severed the

MP without clones (Figure 6A3; 1MPDWT); in the other,

we severed the MP with clones (Figure 6A4; 1MPDmutant).

In both cases, we then allowed the severed axons to de-

generate before processing for phenotypic analysis. Using

this strategy, we could selectively examine Or46a axons

originating from the remaining mutant (1MPDWT) or wild-

type (1MPDmutant) MP. There was no obvious difference

in clone sizes in the antenna across the four groups (data

not shown).

We already know from eyFLP sema-1a�/� experiments

described earlier (Figure 4C1; Table 1) that Or46a ORN

axons exhibit two distinct types of targeting errors: intra-

lobe ectopic terminations and extralobe terminations. If

MP axon targeting exclusively requires antennal Sema-

1a, then all four groups should exhibit the same pheno-

types (since antennae contain sema-1a�/� clones of a

similar size in all cases). If MP axon targeting exclusively

requires Sema-1a-mediated MP-MP axon interactions,

then the 0MP group should not exhibit any phenotypes

(since all MP axons are heterozygous for sema-1a). Fur-

thermore, if MP-MP axon interactions do indeed contrib-

ute to MP axon targeting, then by comparing the pheno-

types from 1MPDWT and 1MPDmutant groups, we can

resolve whether these interactions occur between ipsilat-

eral or contralateral MP axons. For example, if Sema-1a-

mediated MP-MP interactions are exclusively between ip-

silateral axons and there is no contribution of contralateral

axons, then MP axons in the 1MPDmutant group should

have the same phenotype as the 0MP group; if contralat-

eral interactions are involved, the 1MPDmutant group

should have more severe phenotypes than the 0MP group.

We scored Or46a MP axon mistargeting blindly for these

four experimental groups. The results are shown as repre-

sentative images in Figure 6B and quantified in Figure 6C.

Interestingly, the extralobe termination phenotype is found

exclusively in 2MP and in 1MPDWT groups, but never in

0MP or 1MPDmutant groups. These data indicate that
.
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Figure 6. Cellular Bases of Sema-1a-Mediated Axon-Axon Interactions

(A0–A4) Schematic of experimental design to test the contributions of various forms of axon-axon interactions to MP axon targeting (see text for detail).

(B) Representative images of axon targeting of Or46a ORN from the maxillary palp. Top row, intralobe ectopic terminations indicated by white arrow-

heads. Bottom row, extralobe terminations indicated by white arrows. Note for all images a single section of the antennal lobe is shown (top row,

anterior; bottom row, posterior below ALs, thus nc82 staining is weaker). The amount of red sema-1a�/� axons is equivalent across 0MP, 1MP,

and 2MP groups (data not shown); however, this is not reflected in single sections of the AL shown here, as many red axons are not in these planes.

For 1 MP groups (A3 and A4), MPs were cut 5–8 days prior to dissection. Green, Or46a axons visualized by Or46a-mCD8-GFP; red, myr-mRFP marker

for sema-1a�/� eyFLP MARCM clones; blue: nc82. Scale bar, 50 mm.

(C) Quantification of intralobe ectopic termination as well as extralobe termination for different clone types. All quantification was done blindly.

Intralobe ectopic termination frequency = percent of total brains with intralobe ectopic termination. Regional quantification of intralobe ectopic

termination = percent of total brains with ectopic terminations in regions indicated (see Figure 5 legend for region definition). Extralobe

termination = percent of MP bundles that terminate outside the AL (number of MP axon bundles that terminate outside the AL/total number of MP

axon bundles examined 3 100). The number of brains examined is indicated in parentheses.

Genotype: WT: elav-Gal4, eyFLP; tubP-G80 FRT40a or sema-1aP1 FRT40a/CyO; UAS-myr-mRFP/Or46a-mCD8-GFP. 2 MP, 1 MP, 0 MP: elav-Gal4,

eyFLP; sema-1aP1 FRT 40a/tubP-G80 FRT 40a; UAS-myr-mRFP/Or46a-mCD8-GFP.
the extralobe termination is exclusively contributed by

Sema-1a-mediated ipsilateral MP-MP interactions. This

interpretation is consistent with our finding that in the ab-
N

sence of all antennal axons (Figure 2), we did not observe

extralobe termination of MP axons (data not shown) de-

spite their mistargeting defects within the antennal lobe.
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Figure 7. A Model for Temporal Target

Restriction

(A) Axons of antennal ORNs (pink) arrive at the

developing antennal lobe (circle) at 18 hr APF

and start to invade the lobe by 32 hr APF.

Axons of the MP ORNs (blue) begin to reach

the antennal lobe at 32 hr APF. Through

Sema-1a-PlexinA-mediated repulsion, MP

axons are constrained to their appropriate

target glomeruli by Sema-1a expressed on an-

tennal ORN axons. AT, antenna; MP, maxillary

palp; AL, antennal lobe; SOG, suboesophageal

ganglion (shaded in gray). Not drawn to scale.

(B) Magnified schematic of WT MP ORN axon

bundle (blue) innervating the AL (yellow circle)

at 32 hr APF (left, similar area as dotted box

in [A] at 32 hr APF). In sema-1a or plexinA mu-

tants, the MP axons instead terminate between

the AL and the SOG (right box) as a result of

lack of defasciculation.
A very different picture emerges when we examined the

intralobe ectopic termination. Here, Or46a axon mistar-

geting occurs in all four experimental groups (Figure 6B).

Given the mosaic nature of these experiments that intro-

duces large variance in clone location, quantitative statis-

tical comparisons are difficult. However, tabulation of the

frequency and location of intralobe ectopic terminations

(Figure 6C) reveals no obvious difference among the four

groups. This experiment therefore indicates that correct

targeting of MP Or46a axons within the antennal lobe de-

pends on Sema-1a predominantly, if not exclusively, on

antennal axons.

DISCUSSION

Temporal Target Restriction of ORN Axons Mediated

by Sema-1a/PlexinA

Previous genetic mosaic analyses of the POU transcrip-

tion factor Acj6 suggested hierarchical interactions among

different classes of ORNs contribute to their axon target-

ing (Komiyama et al., 2004). However, it was unclear

what molecules mediate these interactions and under

what cellular and developmental context these interac-

tions take place. In this study, we provided mechanisms

to address both questions. We propose a ‘‘temporal target

restriction’’ model (Figure 7A). Antennal ORN axons reach

and start to pattern the developing antennal lobe before

the arrival of MP axons. These early-arriving antennal

axons express a high level of Sema-1a. Late-arriving MP

axons express the repulsive receptor PlexinA and are

repelled by Sema-1a expressed on the antennal axons.

Thus, antennal ORN axons restrict MP ORN axon target-

ing to the proper antennal lobe region. The target glomeruli
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of MP classes are indeed clustered in a small area in the

adult antennal lobe, surrounded by target glomeruli of

antennal ORNs (Couto et al., 2005).

Multiple lines of evidence support the temporal target-

restriction model. First, pioneering axons of the antennal

ORNs reach the antennal lobe �12 hr prior to those of

the MP ORNs (Figure 1). Second, loss of antennal ORN

axons results in mistargeting of MP axons, but not vice

versa (Figure 2). Third, both Sema-1a and its known recep-

tor PlexinA are expressed in ORN axons at appropriate

developmental stages (Figure 3). Fourth, extensive genetic

mosaic analyses of sema-1a indicate that Sema-1a is re-

quired for axon targeting of all MP ORN classes and acts

non-cell-autonomously as a ligand (Figure 4; Table 1). Fifth,

knockdown of PlexinA in ORNs results in MP mistargeting

phenotypes similar to those of sema-1a mosaics and those

resulting from loss of antennal axons (Figure 5). Lastly, MP

axon targeting within the antennal lobe predominantly

relies on Sema-1a on antennal axons (Figure 6).

This model makes a few additional predictions that we

have not directly tested due to technical limitations: (1)

PlexinA should act cell autonomously in MP ORNs; (2)

Sema-1a/PlexinA should mediate repulsion between an-

tennal and MP axons; (3) the sequential arrival of antennal

and MP axon innervation should be essential for their inter-

actions. The first prediction is supported by previous find-

ings that PlexinA acts as a receptor for Sema-1a in embry-

onic motor axon guidance (Winberg et al., 1998), as well as

our own data that PlexinA acts in ORNs and genetically

interacts with Sema-1a. The second prediction is sug-

gested by MP axon mistargeting to normal targets of an-

tennal axons in sema-1a�/� and plexinA RNAi conditions

and is consistent with the well-documented repulsive
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functions of Sema-1a in Drosophila embryos (Winberg

et al., 1998; Yu et al., 1998) and of Semaphorins more gen-

erally from insects to mammals (Tessier-Lavigne and

Goodman, 1996; Dickson, 2002). Finally, the temporal

evidence remains correlative rather than causal, since it

is currently not possible to specifically alter the sequence

of axon arrival.

Although a central focus of our study is the axon-axon

interaction between antennal and MP ORNs, it is likely

that similar axon-axon interactions take place between

different classes of antennal axons to regulate their target-

ing. The following data from our study support this extrap-

olation. Antennal ORN axons express both Sema-1a and

PlexinA; certain classes of antennal ORN axons require

Sema-1a non-cell-autonomously (Figure 4; Table 1); and

PlexinA is required for proper targeting of many antennal

ORN classes examined. A rigorous test of this extrapo-

lation will require the identification of ORN class-specific

promoters that are expressed early during development.

This will allow for the examination of axon arrival timing

and genetic manipulations of specific antennal ORN

classes.

Contribution of Axon-Axon Interactions

to Drosophila ORN Axon Targeting

Axon-axon interactions among ORN axons likely repre-

sent one of multiple mechanisms that enable �50 classes

of ORNs to target their axons to�50 glomeruli. In the phe-

notypic analyses described here for sema-1a and plexinA,

although the severity of phenotypes varies depending on

classes and genetic manipulations, the normal glomerular

targets are often still innervated. This could be rationalized

by the mosaic nature of sema-1a loss-of-function analy-

ses, the partial knockdown of PlexinA by RNAi, or contri-

butions of other ligand-receptor pairs to antenna-MP

axon-axon interactions. However, even in the extreme

cases of smo clones where both antennae fail to develop

and all antennal axons are presumably missing, the MP

axon mistargeting phenotype is only partially penetrant.

These observations suggest that axon-axon interactions

contribute to the fidelity of axon targeting together with

other mechanisms. We envision that global cues ex-

pressed in the antennal lobe act first to direct pioneering

ORN axons to different general areas of the antennal

lobe, axon-axon interactions then act to constrain the

coarse targeting of later-arriving axons, and pre- and

postsynaptic recognition (Zhu et al., 2006) contributes to

the final target selection.

Multiple Functions of Sema-1a in the Drosophila

Olfactory System Development

Our genetic mosaic analyses indicate that Sema-1a- and

PlexinA-mediated axon-axon interactions are also used

among MP axons to regulate their entry into the antennal

lobe. A disruption of MP-MP interactions results in occa-

sional MP axon termination before entering the antennal

lobe (Figure 7B). This phenotype is quite analogous to

the failure of motor axons to defasciculate from their
fascicles upon reaching their muscle field observed in

sema-1a or plexinA mutant Drosophila embryos (Winberg

et al., 1998; Yu et al., 1998); this embryonic phenotype has

been interpreted as a defect in Sema-1a-PlexinA medi-

ated axon-axon repulsion, which normally would facilitate

defasciculation of individual axons from the rest of the

fascicle. Similarly, MP-MP axon-axon repulsion mediated

by Sema-1a and PlexinA may serve to loosen the indi-

vidual MP axons within the bundle, allowing them to

dissociate from each other and facilitate their entry into

the antennal lobe (Figure 7B).

In a separate study, we show that at an earlier stage dur-

ing development, Sema-1a acts cell autonomously as a

receptor (in response to an unknown ligand) in olfactory

PNs for their dendritic targeting (Komiyama et al., 2007).

It is thus of interest that Sema-1a acts in two different

modes to regulate targeting specificity of PNs and ORNs

that eventually become synaptic partners. This finding

also raises the possibility that in addition to acting as a

receptor for PN dendritic targeting, Sema-1a on PN den-

drites might also act as a ligand for targeting of ORN axons

that express and require PlexinA. However, our prelimi-

nary studies (T.K. and L.L., unpublished data) have not

yielded positive evidence to support this hypothesis.

Semaphorins and their receptors have various functions

in wiring the nervous system (Tessier-Lavigne and Good-

man, 1996; Dickson, 2002), including olfactory systems.

In mice, Semaphorin3F-Neuropilin2 signaling restricts

ORN axon termination to the glomerular layer, preventing

axon overshoot into deeper layers of the olfactory bulb

(Cloutier et al., 2002, 2004; Walz et al., 2002). Moreover,

Semaphorin3A-Neuropilin1 contributes to the broad orga-

nization of ORN axon targeting (Schwarting et al., 2000,

2004; Walz et al., 2002). Semaphorin3A, expressed in

a broad compartment of the olfactory bulb by glial cells,

repels Neuropilin1-expressing ORNs from this area.

Sema3A-Neuropilin1 signaling has a different function in

chick ORN targeting: it prevents ORNs from prematurely

entering, and subsequently overshooting, the olfactory

bulb (Renzi et al., 2000). Our findings are conceptually

and qualitatively distinct from these previous reports: we

find that Sema-1a mediates the interactions between

axons with temporally distinct innervation patterns, rather

than the interaction between axons and their targets.

Axon-Axon Interaction and Temporal Target

Restriction in Neuronal Wiring

Clear examples that temporal sequence plays an impor-

tant role in neuronal wiring come from numerous studies

on pioneering axons from insects to mammals. Early

axons lay down the path for late ones to follow, presum-

ably through axon-axon adhesion and fasciculation

(Bate, 1976; Raper et al., 1983; Eisen et al., 1989; McCon-

nell et al., 1989; Lin et al., 1995 and references therein).

Axon-axon interactions have also been proposed to play

a role in final target selection. For example, in Drosophila

photoreceptor axon targeting, R1–R6 axons from the

same ommatidium, upon reaching the laminar layer,
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select six distinct cartridges to send their final terminal

branches. Hierarchical interactions among photorecep-

tors contribute to their target selections, although the

mechanism is unknown (Clandinin and Zipursky, 2000).

In the establishment of the retinotopic map of the verte-

brate visual system, relative rather than absolute EphA re-

ceptor levels on retinal ganglion cells determine the ante-

rior-posterior positions of their axon termination at the

target, likely through axon-axon interactions and compe-

tition (Brown et al., 2000). In mouse ORN axon targeting,

axon-axon interactions have been proposed to allow

ORNs expressing the same OR to converge and stabilize

(Ebrahimi and Chess, 2000; Feinstein and Mombaerts,

2004) and to provide comparisons and discriminations

of different ORN classes (Feinstein and Mombaerts,

2004). The mechanisms by which these axon-axon inter-

actions regulate targeting specificity are not well under-

stood, and the role of temporal sequences has not been

explored in these systems. A difficulty is to unravel where

these neurons interact—at cell bodies, axon paths, or tar-

get areas. The Drosophila olfactory system provides an

excellent model to explore the molecular and cellular

basis of these axon-axon interactions. In particular, the

physical separation of ORN cell bodies into two sensory

organs, the antenna and the maxillary palp, allows us to

assess afferent-afferent interactions exclusively at their

final target area—a feature we have exploited here to dis-

sect the cellular and molecular basis of ORN axon-axon

interactions.

Examples of a common target area innervated by multi-

ple input axons—whether arriving simultaneously or se-

quentially—are ample in developing nervous systems.

We propose that target restriction through axon-axon

interactions as described here could contribute widely to

establishing neuronal wiring specificity.

EXPERIMENTAL PROCEDURES

Mosaic Analysis

MARCM analysis was performed according to previously described

methods (Lee and Luo, 1999; Komiyama et al., 2004). sema-1aP1

and sema-1aP2 are null and strong hypomorphic alleles of sema-1a, re-

spectively (Yu et al., 1998). smo3 is a null allele of smoothened (Chen

and Struhl, 1998).

Immunostaining

Immunostaining was performed according to previously described

methods (Komiyama et al., 2003). Rabbit anti-Sema-1a (kind gift of

A. Kolodkin) was used at 1:5000. Rabbit anti-PlexinA antibodies

were generated by New England Peptide according to the peptide

sequence SDKNEKSHKYETLNISKC in the cytoplasmic domain of

the PlexinA protein, custom affinity-purified, and used at 1:500.

Transgenes

Or-Gal4s were described previously (Hummel et al., 2003; Hummel

and Zipursky, 2004; Komiyama et al., 2004; Couto et al., 2005; Fishile-

vich and Vosshall, 2005; Kreher et al., 2005). UAS-RNAi for sema-1a

and plexinA were part of a whole-genome transgenic RNAi library

(G. Dietzl and B.J.D., unpublished data). pebbled-Gal4 was identified

from an expression screen of newly generated Gal4 enhancer trap

lines (U. Heberlein, E.C. Marin, and L.L., unpublished data) and map-
198 Neuron 53, 185–200, January 18, 2007 ª2007 Elsevier Inc.
ped to the pebbled locus using inverse PCR. UAS-HA-synaptotagmin

was as described (Robinson et al., 2002). Or-mCD8GFP transgenes

were as described (Couto et al., 2005).

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/53/2/185/DC1/.
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